石油学报 ›› 2019, Vol. 40 ›› Issue (6): 726-733.DOI: 10.7623/syxb201906008

• 石油工程 • 上一篇    下一篇

深水泡沫套管静水压载特性与压力控制机理

胡志强1,2, 杨进1, 路保平2, 侯绪田2, 黄小龙3, 巩立根1, 李文龙1, 李舒展1   

  1. 1. 中国石油大学(北京)海洋工程研究院 北京 102249;
    2. 中国石油化工股份有限公司石油工程技术研究院 北京 100101;
    3. 中海油能源发展股份有限公司工程技术深圳分公司 广东深圳 518067
  • 收稿日期:2018-07-18 修回日期:2018-11-27 出版日期:2019-06-25 发布日期:2019-07-02
  • 通讯作者: 杨进,男,1966年3月生,1989获石油大学(华东)学士学位,2004获中国矿业大学(北京)博士学位,现为中国石油大学(北京)教授、博士生导师,主要从事石油工程和海洋工程领域的教学和科研工作。Email:yjin@cup.edu.cn
  • 作者简介:胡志强,男,1990年12月生,2013年获重庆科技学院学士学位,现为中国石油大学(北京)博士研究生,主要从事海上油气钻完井技术及工具研究。Email:huzhiqiangchn@foxmail.com
  • 基金资助:

    国家自然科学基金项目"海洋深水浅层钻井关键技术基础理论研究"(No.51434009)、国家自然科学基金项目"深水油气井导管全寿命周期承载力演化机理研究"(No.51774301)、国家自然科学基金创新研究群体项目"复杂油气井钻井与完井基础研究"(No.51821092)和国家科技重大专项"海外重点油气田开发钻采关键技术"(2017ZX05032-004-003)资助。

Hydrostatic pressure characteristics and pressure control mechanism of foam casing in deepwater wells

Hu Zhiqiang1,2, Yang Jin1, Lu Baoping2, Hou Xutian2, Huang Xiaolong3, Gong Ligen1, Li Wenlong1, Li Shuzhan1   

  1. 1. Institute of Ocean Engineering, China University of Petroleum, Beijing 102249, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China;
    3. Shenzhen Branch of CNOOC EnerTech-Drilling & Production Company, Guangdong Shenzhen 518067, China
  • Received:2018-07-18 Revised:2018-11-27 Online:2019-06-25 Published:2019-07-02

摘要:

深水油气井生产测试阶段受地层高温流体的影响,会产生套管环空圈闭压力上升现象,严重威胁油气井管柱服役周期和井筒完整性。采用泡沫套管技术能有效减缓环空压力上升,保护管柱结构不受损坏,是一项经济可行的控压措施。首先通过实验测试得到了不同温度和不同微珠质量含量下的复合泡沫材料体积压缩率随静水压力的变化规律,并根据Gibson模型中的多孔材料力学行为理论,分析了泡沫套管控压过程中线弹性变形、屈服破坏和致密化压缩3个阶段的力学行为特征。同时根据弹性力学和热应力理论,结合多层圆筒受热变形原理,遵照体积相容性原则推导出密闭环空内压力增量、体积增量与温度变化之间的函数关系。针对泡沫材料体积压缩量进行分段计算处理,利用实验数据线性回归得到泡沫材料线弹性阶段和致密化阶段的压缩系数,建立了涵盖热膨胀效应和致密化效应的泡沫体积压缩计算模型。结果表明:泡沫材料的启动压力会随着温度的升高而降低,空心玻璃微珠含量越高,泡沫材料体积压缩率越大;深水井多层套管环空内压力增量、体积增量与温度变化呈线性关系,环空体积增量越大,环空压力增量越小;泡沫材料在致密化压缩阶段比线弹性压缩阶段更能有效地控制环空压力上涨幅度,计算时不可忽略;当环空压力增量达到泡沫套管启动压力时,环空内压力大幅降低,套管体积变化量减小。

关键词: 深水油气井, 环空压力, 可压缩泡沫, 环空体积, 泡沫套管, 启动压力

Abstract:

The production test phase of deepwater oil and gas wells is affected by high temperature fluids in the formation, leading to a rise of casing annular trapped pressure, severely threatening the casing service cycle and well integrity. The foam casing technology is an economically pressure management technology able to slow down the annulus pressure buildup and protect casing structure from damage. In this study, the change laws of volumetric compressive rate of crushable syntactic foam materials with hydrostatic pressure under different temperatures and hallow glass microsphere mass fractions are obtained through experiments; According to the theory of the porous material mechanics behavior of Gibson model, the mechanic behavior characteristics are analyzed in three stages of foam casing pressure control process, i.e., linear elastic deformation, yield damage and densification. Meanwhile, based on the elastic mechanics and thermal stress theory in combination with the principle of heat deformation of multi-layer cylinder and volume compatibility theory, this paper deduces the function relationship between the annular pressure and volume increment and temperature change. In addition, piecewise calculation is conducted on the volume compression of foam material. The compressive rates of the linear elastic stage and densification stage of foam material are acquired through the linear regression of experimental data, so as to create a calculation model of foam volume compression covering both thermal expansion and densification effect. The results have indicated that the initialized pressure of foam material will decrease with the rise of temperature, and the higher the mass content of hollow glass microspheres is, the greater the volume compression ratio of foam material will be. The annular pressure and volume increments present a liner relation with temperature changes in multi-layer casing of deep water well, and the greater the annular pressure increment is, the smaller the annular volume increment will be. The densification stage is more effective than the linear elastic stage of foam material to release annular pressure increment, which should not be ignored in calculation; when the annular pressure increment reaches the initialized pressure of foam casing, the annular pressure will be greatly reduced and the casing volume variation will be decreased.

Key words: deepwater wells, annular pressure buildup, crushable syntactic foam, annular volume, foam casing, crush pressure

中图分类号: