石油学报 ›› 2024, Vol. 45 ›› Issue (2): 412-426,460.DOI: 10.7623/syxb202402007

• 油田开发 • 上一篇    下一篇

储层改造对Ⅰ类天然气水合物藏降压开发效果的影响规律

刘永革1,2, 李果1,2, 贾伟1,2, 白雅洁1,2,3, 侯健1,2, Clarke M A4, 徐鸿志5, 赵二猛1,2, 纪云开6, 陈立涛1,2, 郭天魁1,2, 贺甲元3, 张乐3   

  1. 1. 中国石油大学(华东)非常规油气开发教育部重点实验室 山东青岛 266580;
    2. 中国石油大学(华东)石油工程学院 山东青岛 266580;
    3. 中国石油化工股份有限公司石油勘探开发研究院 北京 100083;
    4. 卡尔加里大学 加拿大阿尔伯塔 T2N1N4;
    5. 中国石油集团工程技术研究有限公司 天津 300451;
    6. 青岛海洋地质研究所 山东青岛 266237
  • 收稿日期:2022-11-12 修回日期:2023-04-12 出版日期:2024-02-25 发布日期:2024-03-07
  • 通讯作者: 侯健,男,1972年10月生,2002年获石油大学(华东)博士学位,现为中国石油大学(华东)教授、博士生导师,主要从事油气藏渗流相关科研与教学工作。Email:houjian@upc.edu.cn
  • 作者简介:刘永革,男,1987年6月生,2014年获中国石油大学(北京)博士学位,现为中国石油大学(华东)副教授、硕士生导师,主要从事天然气水合物藏数值模拟相关科研与教学工作。Email:liuyongge@upc.edu.cn
  • 基金资助:
    国家自然科学基金杰出青年科学基金项目(No.51625403)、国家自然科学基金项目(No.52334002)、青岛市自然科学基金项目(23-2-1-227-zyyd-jch)、中国石油天然气集团有限公司科技重大项目(ZD2019-184-002)和中国石油化工股份有限公司科技部项目(P20025,P20040-4)资助。

Influence law of reservoir stimulation on depressurization exploitation of class Ⅰ natural gas hydrate reservoir

Liu Yongge1,2, Li Guo1,2, Jia Wei1,2, Bai Yajie1,2,3, Hou Jian1,2, Clarke M A4, Xu Hongzhi5, Zhao Ermeng1,2, Ji Yunkai6, Chen Litao1,2, Guo Tiankui1,2, He Jiayuan3, Zhang Le3   

  1. 1. MOE Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum, Shandong Qingdao 266580, China;
    2. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China;
    3. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China;
    4. University of Calgary, Alberta T2N1N4, Canada;
    5. CNPC Engineering Technology Research Company Limited, Tianjin 300451, China;
    6. Qingdao Institute of Marine Geology, Shandong Qingdao 266237, China
  • Received:2022-11-12 Revised:2023-04-12 Online:2024-02-25 Published:2024-03-07

摘要: 针对目前天然气水合物藏数值模拟器无法精确表征基质和储层改造区传质传热规律的缺陷,在Tough+Hydrate软件中添加了PEBI非结构网格划分模块和基质—储层改造区传质传热计算模块,实现了储层改造辅助降压开发天然气水合物藏的数值模拟。首先对基质和储层改造区分别进行了建模,并根据离散裂缝理论对基质和储层改造区之间的传质传热规律进行了表征,建立了天然气水合物藏储层改造辅助降压开发数值模拟方法。然后以水力压裂储层改造方法为例,研究了中国南海神狐海域试采区天然气水合物藏水力压裂辅助降压开发的产能和物理场变化规律,并对产能影响因素进行了分析。研究结果表明,水力压裂可以加快气水流动相的产出速率和降压速率,进而更充分地利用储层热能和压能促进混合层和水合物层中水合物的分解和产能提升。相比于无压裂方案,水力压裂后峰值产量和长期开发累积产气量的增幅分别可达198.7%和108.1%,但受制于储层热能的大量消耗,降压开发后期水合物分解速率和产能均会出现明显下降,且降压结束后水合物层中仍会剩余大量未分解水合物。裂缝导流能力、条数和半长均会对产能产生较大影响,裂缝导流能力越强、裂缝条数越多、半长越大,降压开发的产能也越高。

关键词: 天然气水合物藏, 水力压裂, 离散裂缝, 非结构网格, 降压开发

Abstract: Aiming at the defect that professional gas hydrate reservoir numerical simulator fails to accurately characterize mass and heat transfer laws in the matrix and reservoir stimulation areas. By adding PEBI unstructured grid division module and mass and the heat transfer calculation module for matrix and reservoir stimulation area in Tough+Hydrate software, a breakthrough is made in the numerical simulation of depressurization exploitation of natural gas hydrate reservoir assisted by reservoir stimulation. Firstly, the matrix and reservoir stimulation areas are modeled respectively, and the mass and heat transfer laws between the matrix and reservoir stimulation areas are characterized based on discrete fracture theory, thus establishing the numerical simulation method for depressurization exploitation of natural gas hydrate reservoir assisted by reservoir stimulation. Then, taking the reservoir stimulation by hydraulic fracturing as an example, the paper investigates the variation law of productivity and physical field during depressurization exploitation of natural gas hydrate reservoir assisted by hydraulic fracturing during trial production in Shenhu sea area of the South China Sea, and analyzes the influencing factors of productivity. Research results show that hydraulic fracturing can greatly accelerate the output rate and depressurization rate for gas-water mobile phase, so as to make full use of the reservoir heat and pressure to promote hydrate dissociation in the hybrid layer and hydrate layer. Compared with the case of no fracturing, the peak gas production and long-term cumulative gas production can increase up to 198.7 % and 108.1 % after hydrofracturing, respectively. However, being subject to the large consumption of heat, the hydrate dissociation rate and gas production will decrease significantly in the later stage of depressurization exploitation, and a large amount of undissociated hydrates still remain in the hydrate layer after depressurization. Fracture conductivity, fracture number and half length will have a great impact on gas productivity. The higher gas productivity after depressurization exploitation is attributed to the stronger fracture conductivity, the larger amount of fractures, and the larger half length.

Key words: gas hydrate reservoir, hydraulic fracturing, discrete fracture, unstructured grid, depressurization exploitation

中图分类号: