石油学报 ›› 2014, Vol. 35 ›› Issue (1): 85-92.DOI: 10.7623/syxb201401009

• 油田开发 • 上一篇    下一篇

低渗/致密油藏分段压裂水平井渗流特征的物理模拟及数值模拟

杨正明1,2, 张仲宏3, 刘学伟1,2, 田文博1, 徐庆岩1   

  1. 1. 中国石油勘探开发研究院廊坊分院渗流流体力学研究所 河北廊坊 065007;
    2. 提高石油采收率国家重点实验室 北京 100083;
    3. 中国石油天然气股份有限公司勘探与生产分公司 北京 100007
  • 收稿日期:2013-06-13 修回日期:2013-09-15 出版日期:2014-01-25 发布日期:2013-12-09
  • 通讯作者: 杨正明,男,1969年1月生,1991年毕业于石油大学(华东)油藏工程专业,2004年获中国科学院博士学位,现为中国石油勘探开发研究院廊坊分院渗流流体力学研究所副总工程师、高级工程师,主要从事渗流理论、低渗透油气田开发和三次采油方面的研究工作。Email:yzmhxj@263.net
  • 作者简介:杨正明,男,1969年1月生,1991年毕业于石油大学(华东)油藏工程专业,2004年获中国科学院博士学位,现为中国石油勘探开发研究院廊坊分院渗流流体力学研究所副总工程师、高级工程师,主要从事渗流理论、低渗透油气田开发和三次采油方面的研究工作。Email:yzmhxj@263.net
  • 基金资助:
    国家重大科技专项(2011ZX05013-006)和中国石油天然气股份有限公司重点科技攻关项目(2011B-1203)资助。

Physical and numerical simulation of porous flow pattern in multi-stage fractured horizontal wells in low permeability/tight oil reservoirs

Yang Zhengming1,2, Zhang Zhonghong3, Liu Xuewei1,2, Tian Wenbo1, Xu Qingyan1   

  1. 1. Institute of Porous Flow and Fluid Mechanics, Langfang Branch, PetroChina Research Institute of Exploration and Development, Langfang 065007, China;
    2. State Key Laboratory of Enhanced Oil Recovery, Beijing 10083, China;
    3. PetroChina Exploration & Production Company, Beijing 100007, China
  • Received:2013-06-13 Revised:2013-09-15 Online:2014-01-25 Published:2013-12-09

摘要: 为了研究低渗/致密油藏分段压裂水平井的开采机理和渗流规律,通过建造高压仓、密封和改进多通道电阻率测量方法,研发了大型露头岩样高压物理模拟实验系统。通过分段压裂水平井物理模型的岩样筛选、模型的制作和封装、模型抽真空饱和以及有效驱动的物理模拟评价等方法的研究,建立了分段压裂水平井物理模拟实验方法。进一步结合低渗/致密油藏非线性渗流油藏数值模拟软件研究了低渗/致密油藏分段压裂水平井渗流规律。研究结果表明:在相同驱替压差下,分段压裂水平井的压力梯度值要比普通水平井的压力梯度值高,且随着压裂裂缝半缝长的增加,压力梯度值也增加;当水平井水平段长度一定时,储层渗透率越低,分段压裂水平井的最佳分段数越多;当储层渗透率一定时,水平井水平段长度越长,水平井压裂的最佳段数也越多,最佳裂缝半缝长反而呈现减小的趋势;对于低渗/致密油藏分段压裂水平井开采来说,对产量最为敏感的是压裂段数,其次是裂缝半缝长,而裂缝导流能力最为不敏感。

关键词: 低渗/致密油藏, 水平井, 分段压裂, 物理模拟, 数值模拟, 渗流规律

Abstract: This study investigates the exploration and porous flow mechanisms in multi-stage fractured horizontal wells (MSFHWs) in low permeability/tight oil reservoirs (LPTORs). A high-pressure physical simulation system for large-scale outcrops is developed by constructing a high-pressure chamber, sealing and improving multi-channel resistivity measurement techniques. A physical simulation method for MSFHWs is established based on simulation and evaluation of the physical model in core sample selection, production and packaging, vacuum saturation, and effective driving. Further, porous flow pattern of MSFHWs in LPTORs are studied using a nonlinear porous flow simulation software. Under the same displacement pressure, the pressure gradient in MSFHWs is greater than that in ordinary wells and grows with increasing half-length of the fractures. When the length of a MSFHW is fixed, the LPTOR with lower permeability requires a greater number of optimal fracturing segments; when the permeability of a LPTOR is fixed, the optimal number of fractured segments increases with the horizontal length of the MSFHW but the half-length of optimal fractures shows a declining tendency. For exploitation of MSFHWs in LPTORs, the number of fractured segments is most sensitive to well production, followed by the half-length of the fractures, and fracture conductivity the last.

Key words: low permeability/tight oil reservoirs, horizontal well, multi-staged fracturing, physical simulation, numerical simalation porous flow law

中图分类号: