石油学报 ›› 2018, Vol. 39 ›› Issue (4): 391-401.DOI: 10.7623/syxb201804003

• 地质勘探 • 上一篇    下一篇

蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力

朱汉卿1, 贾爱林1, 位云生1, 贾成业1, 袁贺1, 刘畅2   

  1. 1. 中国石油勘探开发研究院 北京 100083;
    2. 中国石油大学地球科学学院 北京 102249
  • 收稿日期:2017-11-24 修回日期:2018-03-05 出版日期:2018-04-25 发布日期:2018-05-03
  • 通讯作者: 朱汉卿,男,1990年4月生,2012年获中国石油大学(北京)学士学位,现为中国石油勘探开发研究院博士研究生,主要从事页岩气储层结构表征及评价工作。Email:zhq@petrochina.com.cn
  • 作者简介:朱汉卿,男,1990年4月生,2012年获中国石油大学(北京)学士学位,现为中国石油勘探开发研究院博士研究生,主要从事页岩气储层结构表征及评价工作。Email:zhq@petrochina.com.cn
  • 基金资助:

    国家科技重大专项"页岩气生产规律表征与开发技术政策优化"(2017ZX05037-002)资助。

Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin

Zhu Hanqing1, Jia Ailin1, Wei Yunsheng1, Jia Chengye1, Yuan He1, Liu Chang2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. College of Geosciences, China University of Petroleum, Beijing 102249, China
  • Received:2017-11-24 Revised:2018-03-05 Online:2018-04-25 Published:2018-05-03

摘要:

以蜀南地区龙马溪组下部富有机质页岩为研究对象,通过场发射扫描电镜(FE-SEM)、低压氩气吸附实验和重力法高压甲烷吸附实验,研究页岩孔隙结构特征及超临界状态下页岩储层的甲烷吸附能力,并讨论了页岩孔隙结构对甲烷吸附能力的影响。研究表明,蜀南地区龙马溪组富有机质页岩主要发育有机质孔隙,页岩孔隙结构非均质性强,比表面积为16.846~63.738 m2/g,孔体积为0.050~0.092 cm3/g,微孔和介孔贡献页岩90%以上的比表面积,介孔和宏孔贡献页岩90%以上的孔体积。甲烷在地层条件下处于超临界状态,过剩吸附曲线在约12 MPa时出现极大值,随后开始下降。使用修正过的四元Langmuir-Freundlich (L-F)方程拟合高温甲烷过剩吸附曲线,拟合效果较好,相关系数大于0.997。页岩饱和吸附量为0.067 0~0.220 2 mmol/g,不同页岩样品吸附能力差异明显。海相富有机质页岩中,随着有机质含量的增大,有机质孔隙数量增多,且页岩中微孔比例增大,微孔的吸附能力远大于介孔和宏孔,故页岩吸附能力增强。有机质含量是影响蜀南地区海相富有机质页岩孔隙结构和甲烷吸附能力的主要因素。

关键词: 龙马溪组, 页岩, 孔隙结构, 低压Ar吸附, 高压甲烷吸附, 过剩吸附, 四元L-F方程

Abstract:

The lower organic-rich shales in Longmaxi Formation, South Sichuan are taken as research objects in this study. Through field emission scanning electron microscopy (FE-SEM), low-pressure Ar adsorption experiment and gravimetric high-pressure methane adsorption experiment, this paper studies the shale pore structure characteristics and the methane adsorption capacity of shale reservoir under supercritical conditions, and also explores the influences of shale pore structure on methane adsorption capacity. The results show that organic pores are mainly developed in the organic-rich shales, Longmaxi Formation, South Sichuan, where shale pore structure has high heterogeneity, specific surface area of 16.846-63.738 m2/g and pore volume of 0.050-0.092 cm3/g. The micropores and mesopores comprise more than 90% of specific surface area, whereas mesopores and macropores comprise more than 90% of pore volume. Methane is in a supercritical state under formation conditions. The excessive adsorption curve reaches the peak at the pressure of about 12 MPa and then decreases. The modified 4-parameter Langmuir-Freundlich (L-F) equation is used to fit the high-temperature methane excessive adsorption curve, achieving better fitting effects and obtaining the correlation coefficient greater than 0.997. The shale saturated adsorption capacity ranges from 0.067 0 to 0.220 2 mmol/g, and different shale samples have significant differences in adsorption capacity. With the increase of TOC content, the quantity of organic pores and the proportion of shale micropores are increased in marine organic-rich shale, and the adsorption capacity of micropores is rather greater than mesopores and macropores, so that shale adsorption capacity is enhanced. TOC is the key factor affecting the pore structure and methane adsorption capacity of marine organic-rich shales in South Sichuan.

Key words: Longmaxi Formation, shale, pore structure, low-pressure Ar adsorption, high-pressure methane adsorption, excessive adsorption, 4-parameter L-F equation

中图分类号: