石油学报 ›› 2020, Vol. 41 ›› Issue (5): 584-591.DOI: 10.7623/syxb202005007

• 油田开发 • 上一篇    下一篇

低频波对泡沫稳定性协同强化效应

刘静1,2, 夏军勇1,2, 刘玺3, 吴飞鹏1,2, 蒲春生1,2   

  1. 1. 中国石油大学(华东)石油工程学院 山东青岛 266580;
    2. 中国石油大学(华东)非常规油气开发教育部重点实验室 山东青岛 266580;
    3. 延长油田股份有限公司志丹采油厂 陕西延安 717500
  • 收稿日期:2019-06-27 修回日期:2020-02-02 出版日期:2020-05-25 发布日期:2020-06-08
  • 通讯作者: 蒲春生,男,1959年3月生,1982年获西安交通大学学士学位,1992年获西南石油学院博士学位,现为中国石油大学(华东)教授,主要从事非常规油气藏物理生态化学强化开采理论与技术方面的研究工作。Email:chshpu_tx@126.com
  • 作者简介:刘静,女,1982年6月生,2005年获商丘师范学院学士学位,2013年获中国石油大学(华东)博士学位,现为中国石油大学(华东)讲师,主要从事非常规油气藏物理生态化学强化开采理论与技术方面的研究工作。Email:liujing4522009@163.com
  • 基金资助:

    国家自然科学基金项目(No.51904320、No.51874339)和中央高校基本科研业务费专项资金项目(18CX02095A)资助。

Synergistic reinforcement effect of low-frequency waves for foam stability

Liu Jing1,2, Xia Junyong1,2, Liu Xi3, Wu Feipeng1,2, Pu Chunsheng1,2   

  1. 1. School of Petroleum Engineering, China University of Petroleum, Shandong Qingdao 266580, China;
    2. Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum, Shandong Qingdao 266580, China;
    3. Zhidan Oil Production Plant, Yanchang Oil Field Co., Ltd., Shaanxi Yan'an 717500, China
  • Received:2019-06-27 Revised:2020-02-02 Online:2020-05-25 Published:2020-06-08

摘要:

为探究低频波对泡沫稳定性的协同强化规律,构建多孔介质玻璃颗粒模拟器,开展了低频波激励下泡沫在不同孔隙直径(0.541~0.657 mm)多孔介质模拟器中稳定性表征实验,结合Plateau边界流体渗流理论,建立波动条件下泡沫边界流体微渗流动力学模型。研究结果表明,振动可以提高泡沫半衰期,不同孔隙直径多孔介质模拟器中泡沫半衰期提高倍数不同且最佳振动参数不同,多孔介质模拟器孔隙直径为0.541 mm时,对应的最佳振动频率和加速度分别为30 Hz、0.7 gg为重力加速度),泡沫半衰期提高倍数为1.55;多孔介质模拟器孔隙直径为0.657 mm时,对应的最佳振动频率和加速度分别为35 Hz、0.5 g,泡沫半衰期提高倍数为1.38。波动流体微渗流模型揭示,低频波通过改变流体微元的移动速度、缩短流体微元的移动距离来提高泡沫稳定性。

关键词: 低频波, 泡沫稳定性, 协同强化, Plateau边界理论, 微观渗流

Abstract:

To explore the law of synergistic reinforcement of low-frequency waves for foam stability,the study constructs a porous media simulator of glass particles,carries out a characterization experiment of the stability of foam in porous media simulators with different pore diameters (0.541-0.657 mm)under the excitation of low-frequency waves,and establishes a micro-seepage dynamic model of boundary foam fluid under wave conditions in combination with the flow theory of Plateau boundary fluid. The research results show that the half-life of foam can be increased by vibration. The increased multiple of foam half-life vary in porous media simulators with diverse pore diameters,and the optimal vibration parameters are also different. When the pore diameter of the porous media simulator is 0.541 mm,the corresponding optimal vibration frequency and acceleration is 30 Hz and 0.7 g (g is gravitational acceleration)respectively,and the increased multiple of foam half-life is 1.55. When the pore diameter of porous media simulator is 0.657 mm,the corresponding optimal vibration frequency and acceleration is 35 Hz and 0.5 g (g is gravitational acceleration)respectively,and the increased multiple of foam half-life is 1.38. The micro-percolation model of fluid under wave conditions reveals that foam stability is enhanced by low-frequency waves through changing the velocity of fluid microelements and shortening the displacement distance of fluid microelements.

Key words: low-frequency waves, foam stability, synergistic reinforcement, theory of Plateau boundary, microscopic flow

中图分类号: