石油学报 ›› 2019, Vol. 40 ›› Issue (6): 734-739.DOI: 10.7623/syxb201906009

• 石油工程 • 上一篇    下一篇

冲击振动钻井工具流固耦合模拟试验

杨龑栋, 廖华林, 牛继磊, 汪振, 张晨   

  1. 中国石油大学(华东)石油工程学院 非常规油气开发教育部重点实验室 山东青岛 266580
  • 收稿日期:2018-08-01 修回日期:2019-03-25 出版日期:2019-06-25 发布日期:2019-07-02
  • 通讯作者: 廖华林,男,1974年8月生,1996年获江汉石油学院学士学位,2004年获石油大学(华东)博士学位,现为中国石油大学(华东)石油工程学院教授、博士生导师,主要从事油气井工程方面的教学与科研工作。Email:liaohualin2003@126.com
  • 作者简介:杨龑栋,男,1990年3月生,2014年获中国石油大学(华东)学士学位,现为中国石油大学(华东)博士研究生,主要从事油气井力学与控制工程研究。Email:ycz1021909225@163.com
  • 基金资助:

    页岩油气富集机理与有效开发国家重点实验室开放课题(18-ZC0607-0023),国家自然科学基金项目(No.51274235)以及山东省自然学科学基金(ZR2019MEE120)项目资助。

Fluid-structure interaction simulation of rotary percussion drilling tool

Yang Yandong, Liao Hualin, Niu Jilei, Wang Zhen, Zhang Chen   

  1. School of Petroleum Engineering, China University of Petroleum;MOE Key Laboratory of Unconventional Oil & Gas Development, Shandong Qingdao 266580, China
  • Received:2018-08-01 Revised:2019-03-25 Online:2019-06-25 Published:2019-07-02

摘要:

深井超深井钻井过程中,旋转冲击钻井技术是解决硬岩钻速慢的有效方法之一。目前液动冲击器多采用水力能量驱动,随着井深的增加,管路水力能量损耗增大,依靠钻井液驱动的液力冲击装置同样需要消耗水力能量,使得钻头有效压降进一步降低。因此,液力驱动冲击钻井技术在深井超深井中的应用受到局限。基于钻柱振动原理,提出一种利用水力能量和钻柱振动耦合作用的新型冲击旋转钻井装置,通过建立流固耦合物理模型,运用流固耦合方法,获得入口流量、运动位移、振动频率以及入口和出口直径等对装置所产生的载荷特征影响规律。结果表明,装置所产生动载荷幅值随流量、振动位移以及振动频率的增加而增加,而静载荷仅与流量变化有关。

关键词: 冲击钻井, 流固耦合, 冲击振动, 冲击载荷特征, 液动冲击器

Abstract:

Rotary percussion drilling is believed to be an efficient way in deep and ultra-deep well drilling. Currently, the rotary percussion drilling tools are mostly driven by hydraulic energy. However, with the increasing of well depth, the hydraulic energy of drilling fluid loss increases dramatically, and the hydraulic impact device driven by drilling fluid also consumes hydraulic energy to further reduce the effective pressure drop of drilling bit. Therefore, the percussion drilling technology driven by hydraulic energy is restricted for deep and ultra-deep well drilling. Based on the string vibration theory, this paper proposes a new rotary percussion drilling tool driven by the coupling of hydraulic energy and drill string vibration. Through establishing a three dimensional physical model, the fluid-structure interaction method is adopted to obtain the influence laws of device load characteristics from inlet flow, vibration displacement, vibration frequency and inlet & outlet diameter. The results indicate that the dynamic load amplitude of the device is increased with the increasing of flow rate, vibration displacement and frequency, while static load only has relation to flow rate variation.

Key words: percussion drilling, fluid-structure interaction, vibration impact, impact load characteristics, hydraulic hammer

中图分类号: