石油学报 ›› 2019, Vol. 40 ›› Issue (S2): 123-130.DOI: 10.7623/syxb2019S2012

• 石油工程 • 上一篇    下一篇

海上非常规压井井筒多相流动规律实验

耿亚楠1, 任美鹏1, 刘书杰1, 孙宝江2, 卞琦2, 刘录翔2, 于晓东2   

  1. 1. 中海油研究总院有限责任公司 北京 100028;
    2. 中国石油大学(华东)非常规油气开发教育部重点实验室 山东青岛 266580
  • 收稿日期:2019-07-19 修回日期:2019-12-07 出版日期:2019-12-25 发布日期:2020-04-24
  • 通讯作者: 孙宝江,男,1963年11月生,1985年获华东石油学院学士学位,1999年获北京大学博士学位,现为中国石油大学(华东)石油工程学院院长、教授,主要从事海洋油气工程、井控多相流理论及应用研究工作。Email:sunbj1128@vip.126.com
  • 作者简介:耿亚楠,男,1968年6月生,1989年获石油大学(华东)学士学位,2017年获中国石油大学(北京)硕士学位,现为中海油研究总院有限责任公司钻采研究院钻井总师、高级工程师,主要从事海洋石油钻完井方面的设计研究工作。Email:geyn@cnooc.com.cn
  • 基金资助:

    国家重点研发计划项目(2017YFC0804500)、国家重大科技专项(2017ZX05032-004)和中海石油(中国)有限公司科技项目(CNOOC-KJ 135 ZDXM 24LTD ZJ 04)资助。

An experiment on law of multiphase flow in wellbore during offshore unconventional well killing

Geng Yanan1, Ren Meipeng1, Liu Shujie1, Sun Baojiang2, Bian Qi2, Liu Luxiang2, Yu Xiaodong2   

  1. 1. CNOOC Research Institute Company Limited, Beijing 100028, China;
    2. MOE Key Laboratory of Unconventional Oil&Gas Development, China University of Petroleum, Shandong Qingdao 266580, China
  • Received:2019-07-19 Revised:2019-12-07 Online:2019-12-25 Published:2020-04-24

摘要:

海上钻井特殊工况下井涌井喷事故的处理离不开非常规压井技术。海上非常规压井井筒多相流动规律是海上非常规压井设计及实施的理论依据,具有重要的指导作用。通过自主设计建造高为12 m、内径为100 mm、可承压6 MPa的可视化井筒实验系统,开展了气上液下对冲、气液垂直向下流动以及液体在静止气体中的沉降等多种非常规压井井筒多相流动实验,对海上非常规多相流动规律进行了实验研究。结果表明:置换法中压井液的沉降速度随着压井液排量的增加而逐渐增加;压回法压井过程中井筒气泡的临界压回直径随着液相排量的增加而增加,小于临界压回粒径的气泡能够被压回,大于临界压回粒径的气泡无法被压回;当井筒内所有粒径气泡都能被压回的排量被称为临界压回排量;制约顶部压井法的主要参数是注入管下入深度,增加注液接口插入深度可以有效减小气体排量,降低成功压井的临界压井排量。

关键词: 非常规井控, 海上井控, 多相流, 液体沉降, 气泡运移, 气液逆流

Abstract:

The treatment of kick and blowout accidents under special conditions of offshore drilling cannot be done without using the unconventional well killing technology. The law of multiphase flow in wellbore provides a theoretical basis for the design and implementation of offshore unconventional well killing, and plays an important role in guiding practice. This study designs and constructs a visualized wellbore experimental system up to 12 m in hight and 100 mm in inner diameter, and capable of bearing 6 MPa pressure; various experiments of multiphase flow in wellbore during unconventional well killing were carried out, such as the thrusting between upper gas and lower liquid, gas-liquid vertical downward flow, and liquid settlement in static gas. Additionally, a experimental research on the law of offshore unconventional multiphase flow was implemented. The results show that in the displacement method, the settling speed of well killing liquid gradually increases with an increase in liquid displacement. In the backpressure method, the diameter of bubbles returnable under critical backpressure in wellbore increases with the increasing of liquid phase displacement during well killing. The bubbles with the diameter smaller than the size of particles returnable under critical backpressure can be pressed back, and those with the diameter larger than the size of particles returnable under critical pressure cannot be pressed back. When bubbles with various diameters in the wellbore can be all pressed back, it is called the returnable displacement under critical backpressure. The main parameter restricting the top well killing method is the setting depth of injection pipe. Increasing the inserting depth of the fluid injection interface can effectively reduce the gas displacement and the critical displacement for successful well killing.

Key words: unconventional well control, offshore well control, multiphase flow, liquid sedimentation, bubble migration, gas-liquid countercurrent

中图分类号: