石油学报 ›› 2020, Vol. 41 ›› Issue (12): 1744-1773.DOI: 10.7623/syxb202012026

• 综述 • 上一篇    下一篇

火山岩储层地质研究回顾

唐华风1,2,3, 王璞珺3, 边伟华3, 黄玉龙3, 高有峰3, 代晓娟3   

  1. 1. 东北亚生物演化与环境教育部重点实验室(吉林大学) 吉林长春 130061;
    2. 自然资源部东北亚矿产资源评价重点实验室 吉林长春 130061;
    3. 吉林大学地球科学学院 吉林长春 130061
  • 收稿日期:2020-02-22 修回日期:2020-08-06 出版日期:2020-12-25 发布日期:2021-01-06
  • 通讯作者: 唐华风,男,1979年6月生,2001年获吉林大学学士学位,2007年获吉林大学博士学位,现为吉林大学地球科学学院教授、博士生导师,主要从事火山岩储层和火山地层综合研究。Email:tanghfhc@jlu.edu.cn
  • 基金资助:

    国家自然科学基金重大项目(No.41790453)、国家科技重大专项(2016ZX05026-004)和吉林省自然科学基金项目(20170101001JC)资助。

Review of volcanic reservoir geology

Tang Huafeng1,2,3, Wang Pujun3, Bian Weihua3, Huang Yulong3, Gao Youfeng3, Dai Xiaojuan3   

  1. 1. Key-Lab for Evolution of Past Life and Environment in Northeast Asia, Ministry of Education(Jilin University), Jilin Changchun 130061, China;
    2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Jilin Changchun 130061, China;
    3. College of Earth Sciences, Jilin University, Jilin Changchun 130061, China
  • Received:2020-02-22 Revised:2020-08-06 Online:2020-12-25 Published:2021-01-06

摘要:

火山岩油气藏广泛分布于全球13国家的40余个盆地中,是油气勘探的重要领域之一。经过近20年的积累,火山岩储层研究取得了丰富的成果,已成为研究的热点。研究结果表明,火山岩发育11类28型孔隙,其中原生气孔、炸裂缝和冷凝收缩缝等为特有的类型,原生孔缝与次生孔缝的组合形成优质储层;盆地内火山岩多属于中—低孔、中—低渗储层,局部可发育高孔、中—高渗储层;火山岩的孔隙度和渗透率随埋深的增大而减少,通常在3 km之上(沉)火山碎屑岩的孔隙度和渗透率高于熔岩类,在3 km之下则相反;总体来看各类岩性均可发育有利储层,但在具体的区块中只能有特定的岩性发育有利储层;岩相中有5相7亚相可成为有利相带;储层分布模式受火山地层单元约束,如熔岩流垛叶体和熔岩穹丘形成"上好下差"的模式,熔岩流储层物性高于熔岩穹丘;火山机构的中心相带储层物性好于近源相带、远源相带最差。多数有利储层分布在喷发间断不整合界面或构造不整合界面之下的200 m范围之内。盆地火山岩储层是多种成岩作用的综合叠加结果,具有复杂的形成过程,特别是火山地层经受了多次抬升和埋藏时其储层演化过程更加复杂。其中挥发分逸出、冷凝收缩、埋藏前风化、脱玻化作用等是火山岩储层特有的储层成因类型,高含量的酸性条件下易溶成分为溶蚀/溶解提供了物质基础。火山岩储层特征和分布规律研究基本达到定量阶段、而储层形成机理研究还处于定性阶段,基于火山地层单元的储层建模和孔隙成因量化研究应该是下一步研究的重点内容。

关键词: 火山岩储层, 火山岩油气藏, 储层分布规律, 储层成因, 控制因素

Abstract:

Volcanic oil and gas reservoirs are widely distributed in more than 40 basins in 13 countries around the world, and are one of the important areas of hydrocarbon exploration. After nearly 20 years of accumulation, the research on volcanic reservoirs has achieved great results and become a research hotspot. The research results show that there are 11 classes including 28 types of pores in volcanic rocks, among which primary gas pores, explosive fractures and condensation shrinkage joints are unique types. The combination of primary pores and fractures and secondary pores and fractures forms high-quality reservoirs. Most of volcanic rocks in the basin are medium-low porosity and medium-low permeability reservoirs, and high-and medium-high permeability reservoirs are developed in local area. The porosity and permeability of volcanic rocks decrease with the increase of burial depth. Usually above 3 km, the porosity and permeability of (sed) volcanic pyroclastic rocks are higher than those of lavas, and the opposite is true below 3 km. Generally speaking, various lithologies can develop favorable reservoirs, but in specific blocks, only specific lithologies can develop favorable reservoirs. There are 5 lithofacies and 7 sub-lithofacies which can become favorable facies zones. The distribution mode of reservoirs is restricted by the volcanic stratigraphic unit. For example, lava flow lobe and lava dome form a pattern of "good in upper layers and poor in lower layers". The physical properties of lava flow reservoirs are superior to those of lava dome. The physical properties of reservoirs in the central facies zone of the volcanic edifice are better than those of the proximal facies zone, and those of the distal facies zone are the worst. Most favorable reservoirs are distributed within 200 m below the eruptive interval unconformity boundary or tectonic unconformity boundary. The volcanic reservoir in the basin is the product of comprehensive multi-diagenesis superposition, and has a complicated formation process. Especially, when the volcanic strata have undergone multiple times of uplifting and burial, the evolution process of the reservoir is more complicated. In this process, escape of volatile components, condensing shrinkage, weathering before burial, and devitrification present the unique genesis types of volcanic reservoirs. The soluble components under acidic conditions provide the material basis for alteration/dissolution. The research of the characteristics and distribution laws of volcanic reservoir has basically reached the quantitative stage, while that of reservoir forming mechanism is still in the qualitative stage. Quantitative research of reservoir modeling and pore genesis based on volcanic stratigraphic units should be the focus of the next step.

Key words: volcanic reservoir, volcanic oil and gas reservoir, distribution pattern of reservoir, reservoir genesis, controlling factor

中图分类号: