[1] 吴亚生, 姜红霞, 虞功亮, 等.微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因[J].古地理学报, 2018, 20(5):737-775. WU Yasheng, JIANG Hongxia, YU Gongliang, et al.Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China[J].Journal of Palaeogeography, 2018, 20(5):737-775. [2] BURNE R V, MOORE L.Microbialites:organosedimentary deposits of benthic microbial communities[J].Palaios, 1987, 2(3):241-254. [3] 罗平, 王石, 李朋威, 等.微生物碳酸盐岩油气储层研究现状与展望[J].沉积学报, 2013, 31(5):807-823. LUO Ping, WANG Shi, LI Pengwei, et al.Review and prospectives of microbial carbonate reservoirs[J].Acta Sedimentologica Sinica, 2013, 31(5):807-823. [4] 兰才俊, 徐哲航, 马肖琳, 等.四川盆地震旦系灯影组丘滩体发育分布及对储层的控制[J].石油学报, 2019, 40(9):1069-1084. LAN Caijun, XU Zhehang, MA Xiaolin, et al.Development and distribution of mound-shoal complex in the Sinian Dengying Formation, Sichuan Basin and its control on reservoir[J].Acta Petrolei sinica, 2019, 40(9):1069-1084. [5] 刘树根, 宋金民, 罗平, 等.四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景[J].成都理工大学学报:自然科学版, 2016, 43(2):129-152. LIU Shugen, SONG Jinmin, LUO Ping, et al.Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin, China[J].Journal of Chengdu University of Technology:Science & Technology Edition, 2016, 43(2):129-152. [6] 易士威, 李明鹏, 郭绪杰, 等.塔里木盆地寒武系盐下勘探领域的重大突破方向[J].石油学报, 2019, 40(11):1281-1295. YI Shiwei, LI Mingpeng, GUO Xujie, et al.Breakthrough direction of Cambrian pre-salt exploration fields in Tarim Basin[J].Acta Petrolei Sinica, 2019, 40(11):1281-1295. [7] GARRETT P.Phanerozoic stromatolites:noncompetitive ecologic restriction by grazing and burrowing animals[J].Science, 1970, 169(3941):171-173. [8] GUNDE-CIMERMAN N, BUTINAR L, SONJAK S, et al.Halotolerant and halophilic fungi from coastal environments in the Arctics[M]//GUNDE-CIMERMAN N, OREN A, PLEMENITAŠ A.Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya.Dordrecht, Netherlands:Springer, 2005:397-423. [9] MONTY C.Evolving concepts on the nature and the ecological significance of stromatolites[M]//FLVGEL E.Fossil algae.Berlin Heidelberg:Springer, 1977. [10] 胡安平, 沈安江, 杨翰轩, 等.碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J].石油勘探与开发, 2019, 46(5):916-928. HU Anping, SHEN Anjiang, YANG Hanxuan, et al.Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J].Petroleum Exploration and Development, 2019, 46(5):916-928. [11] MANCINI E A, LLINÁS J C, PARCELL W C, et al.Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico[J].AAPG Bulletin, 2004, 88(11):1573-1602. [12] MANCINI E A, PARCELL W C, AHR W M.Upper Jurassic Smackover thrombolite buildups and associated nearshore facies, southwest Alabama[J].Gulf Coast Association of Geological Societies, 2006, 56:551-563. [13] MANCINI E A, PARCELL W C, AHR W M, et al.Upper Jurassic updip stratigraphic trap and associated Smackover microbial and nearshore carbonate facies, eastern Gulf coastal plain[J].AAPG Bulletin, 2008, 92(4):417-442. [14] 宋金民, 罗平, 杨式升, 等.塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J].石油勘探与开发, 2014, 41(4):404-413. SONG Jinmin, LUO Ping, YANG Shisheng, et al.Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J].Petroleum Exploration and Development, 2014, 41(4):404-413. [15] 佘敏, 胡安平, 王鑫, 等.湖湘叠层石生排烃模拟及微生物碳酸盐岩生烃潜力[J].中国石油大学学报:自然科学版, 2019, 43(1):12-22. SHE Min, HU Anping, WANG Xin, et al.Thermocompression simulation of hydrocarbon generation and expulsion for lacustrine stromatolite and hydrocarbon generation potential of microbial carbonates[J].Journal of China University of Petroleum:Edition of Natural Science, 2019, 43(1):12-22. [16] WARREN J K.Evaporites:sediments, resources and hydrocarbons[M].Berlin Heidelberg:Springer, 2006. [17] SLOWAKIEWICZ M, TUCKER M E, PANCOST R D, et al.Upper Permian (Zechstein)microbialites:supratidal through deep subtidal deposition, source rock, and reservoir potential[J].AAPG Bulletin, 2013, 97(11):1921-1936. [18] SLOWAKIEWICZ M, MIKOLAJEWSKI Z.Upper Permian main dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland)[J].Marine and Petroleum Geology, 2011, 28(8):1572-1591. [19] SARG J F, SURIAMIN, TANAVSUU-MILKEVICIENE K, et al.Lithofacies, stable isotopic composition, and stratigraphic evolution of microbial and associated carbonates, Green River Formation (Eocene), Piceance Basin, Colorado[J].AAPG Bulletin, 2013, 97(11):1937-1966. [20] REZENDE M F, TONIETTO S N, POPE M C.Three-dimensional pore connectivity evaluation in a Holocene and Jurassic microbialite buildup[J].AAPG Bulletin, 2013, 97(11):2085-2101. [21] LIPINSKI C J, FRANSEEN E K, GOLDSTEIN R H.Reservoir analog model for oolite-microbialite sequences, Miocene terminal carbonate complex, Spain[J].AAPG Bulletin, 2013, 97(11):2035-2057. [22] 周进高, 付金华, 于洲, 等.鄂尔多斯盆地海相碳酸盐岩主要储层类型及其形成机制[J].天然气工业, 2020, 40(11):20-30. ZHOU Jinggao, FU Jinghua, YU Zhou, et al.Main types and formation mechanisms of marine carbonate reservoirs in the Ordos Basin[J].Natural Gas Industry, 2020, 40(11):20-30. [23] 熊鹰, 姚泾利, 李凌, 等.鄂尔多斯盆地东北部奥陶系马五1+2微生物碳酸盐岩沉积特征及储集意义[J].沉积学报, 2016, 34(5):963-972. XIONG Ying, YAO Jingli, LI Ling, et al.Sedimentary characteristics and reservoir significance of microbial carbonate in Ma51+2 Member of Ordovician in northestern Ordos Basin[J].Acta Sedimentologica Sinica, 2016, 34(5):963-972. [24] 谢康, 谭秀成, 冯敏, 等.鄂尔多斯盆地苏里格气田东区奥陶系马家沟组早成岩期岩溶及其控储效应[J].石油勘探与开发, 2020, 47(6):1159-1173. XIE Kang, TAN Xiucheng, FENG Min, et al.Eogenetic karst and its control on reservoirs in the Ordovician Majiagou Formation, eastern Sulige gas field, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2020, 47(6):1159-1173. [25] 徐旺林, 胡素云, 李宁熙, 等.鄂尔多斯盆地奥陶系中组合内幕气源特征及勘探方向[J].石油学报, 2019, 40(8):900-913. XU Wanglin, HU Xuyun, LI Ningxi, et al.Characteristics and exploration directions of inner gas source from the middle assemblage of Ordovician in Ordos Basin[J].Acta Petrolei Sinica, 2019, 40(8):900-913. [26] LOGAN B W, REZAK R, GINSBURG R N.Classification and environmental significance of algal stromatolites[J].Journal of Geology, 1964, 72(1):68-83. [27] AITKEN J D.Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta[J].Journal of Sedimentary Research, 1967, 37(4):1163-1178. [28] MONTY C L V.The origin and development of cryptalgal fabrics[J].Developments in Sedimentology, 1976, 20:193-249. [29] MONTY C L V, ROUCHY J M, MAURIN A, et al.Reef-stromatolites-evaporites facies relationships from Middle Miocene examples of the gulf of Suez and the Red Sea[M]//PERYT T M.Evaporite basins.Berlin Heidelberg:Springer, 1987:133-188. [30] PRATT B R, JAMES N P.Cryptalgal-metazoan bioherms of Early Ordovician age in the St George group, western Newfoundland[J].Sedimentology, 1982, 29(4):543-569. [31] KENNARD J M, JAMES N P.Thrombolites and stromatolites:two distinct types of microbial structures[J].Palaios, 1986, 1(5):492-503. [32] RIDING R.Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms[J].Sedimentology, 2000, 47(S1):179-214. [33] WARREN J K.Evaporitic source rocks:mesohaline responses to cycles of "famine or feast" in layered brines[M]//KENDALL C G S C, ALSHARHAN A S, JARVIS I, et al.Quaternary carbonate and evaporite sedimentary facies and their ancient analogues:a tribute to Douglas James Shearman.International Association of Sedimentologists, 2012:315-392. [34] BOSAK T, LIANG Biqing, SIM M S, et al.Morphological record of oxygenic photosynthesis in conical stromatolites[J].Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27):10939-10943. [35] BOSAK T, BUSH J W M, FLYNN M R, et al.Formation and stability of oxygen-rich bubbles that shape photosynthetic mats[J].Geobiology, 2010, 8(1):45-55. [36] 杨威, 魏国齐, 谢武仁, 等.川中地区龙王庙组优质储层发育的主控因素及成因机制[J].石油学报, 2020, 41(4):421-432. YANG Wei, WEI Guoqi, XIE Wuren, et al.Main controlling factors and genetic mechanism for the development of high-quality reservoirs in Longwangmiao Formation, central Sichuan Basin[J].Acta Petrolei Sinica, 2020, 41(4):421-432. [37] VAN LITH Y, WARTHMANN R, VASCONCELOS C, et al.Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J].Geobiology, 2003, 1(1):71-79. [38] KENWARD P A, FOWLE D A, GOLDSTEIN R H, et al.Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J].AAPG Bulletin, 2013, 97(11):2113-2125. |