石油学报 ›› 2010, Vol. 31 ›› Issue (5): 863-866.DOI: 10.7623/syxb201005030

• 石油工程 • 上一篇    下一篇

基于模糊核支持向量机的管道磁记忆检测缺陷识别

易  方 1  李著信 2  吕宏庆 2  马维平 3   

  1. 1  中国人民解放军空军油料研究所  北京  100076; 2  中国人民解放军后勤工程学院供油工程系  重庆  401331; 3  中国人民解放军军事交通学院科研部  天津  300161
  • 收稿日期:2010-01-08 修回日期:2010-03-10 出版日期:2010-09-25 发布日期:2010-11-30
  • 通讯作者: 易 方
  • 作者简介:易 方,男,1982年1月生,2010年获中国人民解放军后勤工程学院博士学位,现为中国人民解放军空军油料研究所工程师,主要从事油气储运工程方面的研究。
  • 基金资助:

    中国人民解放军总后勤部项目(油20040207)“输油管道剩余寿命预测技术及装备研究”资助。

Defect recognition by metal magnetic memory  detection of pipelines based on the fuzzy kernel function SVM

YI Fang 1  LI Zhuxin 2  LU  Hongqing 2  MA Weiping 3   

  • Received:2010-01-08 Revised:2010-03-10 Online:2010-09-25 Published:2010-11-30

摘要:

针对金属磁记忆检测管道缺陷判定准则的局限性,通过构造基于梯形模糊数的最大、最小贴近度的模糊核函数,提出了一种基于模糊核支持向量机的缺陷识别方法。通过构建识别函数,将管道状态划分为应力集中、微观缺陷和宏观缺陷3个等级。通过比较未形成缺陷的应力集中区域与微裂纹缺陷的特征,构造了五维支持向量机输入特征向量:小波包频带能量增量、修正傅里叶系数、区域信号的峰峰值、信号的检测切向梯度和检测法向梯度。通过实验设计,对采集的磁记忆信号进行特征提取和缺陷识别。与传统线性核与多项式核识别结果进行比较,分析表明该方法能够有效识别管道缺陷,为金属磁记忆技术精确测定管道缺陷提供了一种新方法。

关键词: 管道, 金属磁记忆, 模糊核函数, 支持向量机, 缺陷, 识别

Abstract:

In order to solve the limitation problem in identifying pipeline defects by the metal magnetic memory (MMM) method, the present study brought forward a method for defect recognition by Support Vector Machine (SVM) based on the fuzzy kernel function via constructing maximum-minimum similarities of trapezium fuzzy data. According to the construction of recognition functions, the pipeline status could be classified into three levels, including stress concentration,micro defect and macro defect. In the comparison of features between the stress concentration area and the micro-cracking defect, the input vectors for SVM were formed by five feature vectors, including the energy increment of wavelet packet frequency bands, the modified Fourier coefficient, the peak-to-peak value of area signals, the tangential gradient and normal gradient of signal detection. After de-noising of MMM signals, the feature extraction and defect recognition were completed by virtue of experiments. Compared with recognition results of traditional liner kernel and polynomial kernel functions, the new approach can effectively identify cracking defects of pipelines, providing a new method for the pipeline defect recognition with MMM testing.

Key words: pipeline, metal magnetic memory, fuzzy kernel function, Support Vector Machine (SVM), defect, recognition