石油学报 ›› 2017, Vol. 38 ›› Issue (9): 973-998.DOI: 10.7623/syxb201709001

• 地质勘探 •    下一篇

沉积盆地超压成因研究进展

赵靖舟, 李军, 徐泽阳   

  1. 西安石油大学陕西省油气成藏地质学重点实验室 西安石油大学地球科学与工程学院 陕西西安 710065
  • 收稿日期:2017-06-13 修回日期:2017-08-18 出版日期:2017-09-25 发布日期:2017-10-09
  • 通讯作者: 赵靖舟,男,1962年11月生,1983年获西北大学地质学系学士学位,2002年获中国石油勘探开发研究院博士学位,现为西安石油大学学术委员会副主任委员、陕西省油气成藏地质学重点实验室主任、二级教授,主要从事油气成藏地质学、非常规油气地质与勘探研究。Email:jzzhao@xsyu.edu.cn
  • 作者简介:赵靖舟,男,1962年11月生,1983年获西北大学地质学系学士学位,2002年获中国石油勘探开发研究院博士学位,现为西安石油大学学术委员会副主任委员、陕西省油气成藏地质学重点实验室主任、二级教授,主要从事油气成藏地质学、非常规油气地质与勘探研究。Email:jzzhao@xsyu.edu.cn
  • 基金资助:

    国家重大科技专项(2016ZX05044,2011ZX05007-004)和国家自然科学基金项目(No.41502132)资助。

Advances in the origin of overpressures in sedimentary basins

Zhao Jingzhou, Li Jun, Xu Zeyang   

  1. Shaanxi Key Laboratory of Petroleum Accumulation Geology, School of Earth Sciences and Engineering, Xi'an Shiyou University, Shaanxi Xi'an 710065, China
  • Received:2017-06-13 Revised:2017-08-18 Online:2017-09-25 Published:2017-10-09

摘要:

近十多年来,超压成因研究在国际上取得了重要进展,主要表现在5个方面。1将超压按照成因分为5种类型:不均衡压实、流体膨胀、成岩作用、构造挤压、压力传递;其中流体膨胀超压的成因包括生烃作用、油裂解气、水热膨胀等,成岩作用则包括蒙脱石—伊利石转化作用等。2总结提出了6种超压成因判识方法,包括测井曲线组合分析法、鲍尔斯法(加载-卸载曲线法)、声波速度-密度交会图法、孔隙度对比法、压力计算反推法以及综合分析法。3随着实证超压成因研究方法的逐渐广泛应用,许多被普遍认为属于不均衡压实成因的超压已被完全或部分否定,生烃作用作为超压成因的重要性和普遍性正在得到愈来愈多证实,黏土矿物成岩作用特别是蒙脱石—伊利石转化作用对超压形成的重要性也已受到重视,构造挤压和压力传递成因的超压得到进一步确认,而且现已发现许多盆地或地区的超压可能为复合成因。4不同的岩性其超压成因往往有别:就泥质岩而言,烃源岩与非烃源岩的超压成因常常不同,通常烃源岩内发育的超压大多与生烃作用密切相关,有时成岩作用也具有重要贡献;非烃源岩内所发育的超压多与不均衡压实、成岩作用或压力传递等有关;砂岩等渗透性岩层的超压则多为压力传递成因。5对于烃源岩层段的超压成因分析而言,由于有机质含量对密度、声波等测井参数具有明显影响,因此在运用这些测井资料分析烃源岩层段的超压成因时,需要进行有机质含量校正,校正前后超压成因的分析结果往往不同。

关键词: 超压成因, 进展, 不均衡压实, 流体膨胀, 成岩作用, 构造挤压, 压力传递

Abstract:

Much progress in the studies on the causes of overpressuring has been made during the past decades, which is summarized and discussed in this article. (1) In terms of the causes, overpressuring is categorized into 5 types, i.e., disequilibrium compaction, fluid expansion, diagenesis, tectonic compression, and pressure transfer. The fluid expansion includes hydrocarbon generation, oil cracking to gas, and hydrothermal expansion, while smectite-illite transformation is the most significant overpressuring mechanism in diagenesis. (2) Six methods for identifying overpressuring causes are proposed, namely, the analysis of multi-logging combination, the Bowers method (loading-unloading diagram), velocity-density crossplotting, correlation of porosities, reverse reasoning from pressure calculation and correlation, and comprehensive analyses. (3) With more and more widespread application of the empirical methods in the investigation of overpressuring causes, almost all of the overpressure cases traditionally claimed and widely accepted as the result of disequilibrium compaction have been denied totally or in part, whereas hydrocarbon generation is demonstrated to be the most common cause for overpressuring, and the importance of clay diagenesis especially smectite-illite transformation to overpressuring has been recognized. In addition, the contribution of tectonic compression and pressure transfer to overpressuring is also confirmed. Moreover, overpressures in many basins are believed to be the outcome of combined action of two or more overpressuring mechanisms. (4) The causes of overpressuring differ with the lithology of rocks where overpressure may develop. Generally speaking, the causes of overpressuing are different between source rocks and non-source rocks. In source rocks, overpressures, if any, are frequently related to hydrocarbon generation and sometimes to diagenesis, while in non-source rocks overpressures are commonly caused by disequilibrium compaction, diagenesis and pressure transfer. (5) As far as the analysis of overpressuring causes for source rocks is concerned, we suggest that the content of organic matter should be corrected appropriately because it affects the logging responses including those of density and acoustic velocity. It has been revealed that the cause of overpressuring based on the corrected logging data can be quite different from that without correction.

Key words: overpressure genesis, progress, disequilibrium compaction, fluid expansion, diagenesis, tectonic compression, pressure transfer

中图分类号: