[1] 王利华,邓金根,周建良,等.弱固结砂岩气藏出砂物理模拟实验[J].石油学报,2011,32(6):1007-1011.
WANG Lihua,DENG Jingen,ZHOU Jianliang,et al.A physical simulation experiment on sanding in weakly consolidated sandstone gas reservoirs[J].Acta Petrolei Sinica,2011,32(6):1007-1011.
[2] 武广瑷,刘刚,曹砚锋,等.稠油油田出砂地面实时监测技术[J].石油钻采工艺,2016,38(4):519-525.
WU Guang'ai,LIU Gang,CAO Yanfeng,et al.Ground real-time monitoring on sand production of heavy oil reservoir[J].Oil Drilling & Production Technology,2016,38(4):519-525.
[3] 董长银,隆佳佳,王登庆,等.防砂水平井旋转水射流解堵工艺参数优化实验[J].石油学报,2013,34(4):759-764.
DONG Changyin,LONG Jiajia,WANG Dengqing,et al.Experiment of parameters optimization for plug removal by rotating jet flow in sand-control horizontal wells[J].Acta Petrolei Sinica,2013,34(4):759-764.
[4] 张洪坤,徐爽,孙宝江,等.基于ANSYS的大尺寸割缝筛管布缝参数设计[J].石油机械,2015,43(10):9-12.
ZHANG Hongkun,XU Shuang,SUN Baojiang,et al.Slotting parameters design of the large size slotted liner based on ANSYS[J].China Petroleum Machinery,2015,43(10):9-12.
[5] 高凯歌,董长银,周崇,等.多轮次注热水平井防砂筛管强度校核方法研究[J].石油机械,2017,45(5):66-72.
GAO Kaige,DONG Changyin,ZHOU Chong,et al.Research on strength check method of sand control screen in multiple heat injection horizontal well[J].China Petroleum Machinery,2017,45(5):66-72.
[6] 匡韶华,石磊,于丽宏,等.防砂筛管测试技术现状及发展探讨[J].石油矿场机械,2013,42(4):83-88.
KUANG Shaohua,SHI Lei,YU Lihong,et al.Discussion on state and development of testing methods for sand control screen[J].Oil Field Equipment,2013,42(4):83-88.
[7] 董长银,刘永红.机械防砂完井筛管[M].北京:中国石化出版社,2017.
DONG Changyin,LIU Yonghong.Mechanical sand control completion screen[M].Beijing:China Petrochemical Press,2017.
[8] FUH G F,MORITA N,FURUI K.Modeling analysis of sand-screen collapse resistance under geotectonic load[R].SPE 124388,2009.
[9] GILLESPIE G,HALL C A,SLADIC J S.Development of an improved FLC pill for testing wire wrap screens collapse and burst resistance[R].SPE 156922,2012.
[10] 丁祖鹏,罗艳艳,韩彬,等.射孔对套管抗挤强度的影响分析与试验[J].钻采工艺,2016,39(4):15-18.
DING Zupeng,LUO Yanyan,HAN Bin,et al.Influence of perforating on casing collapsing strength and its test[J].Drilling & Production Technology,2016,39(4):15-18.
[11] 李明飞,徐绯,窦益华.再生老井二次射孔和三次射孔套管强度安全性评价[J].石油钻采工艺,2018,40(4):453-459.
LI Mingfei,XU Fei,DOU Yihua.Safety evaluation on the casing strength of reactivated old wells after secondary and tertiary perforation[J].Oil Drilling & Production Technology,2018,40(4):453-459.
[12] GUO Yonggui,BLANFORD M,CANDELLA J.Evaluating the risk of casing failure due to high-density perforation:a 3D FEM case study from a deep water reservoir,GoM[R].SPE 170618,2014.
[13] 岳艳芳,仝少凯,窦益华.高温高压深井射孔段套管应力理论计算与分析[J].石油机械,2015,43(4):48-53.
YUE Yanfang,TONG Shaokai,DOU Yihua.Analysis of stresses on casings in perforated intervals of HTHP deep wells[J].China Petroleum Machinery,2015,43(4):48-53.
[14] 王同涛,闫相祯,杨秀娟.基于塑性铰模型的煤层气完井筛管抗挤强度分析[J].煤炭学报,2010,35(2):273-277.
WANG Tongtao,YAN Xiangzhen,YANG Xiujuan.Collapse pressure of perforated liner casing in CBM exploration based on plastic hinge model[J].Journal of China Coal Society,2010,35(2):273-277.
[15] 于永南,杨秀娟.射孔套管剩余抗挤能力分析[J].石油大学学报:自然科学版,2004,28(1):77-80.
YU Yongnan,YANG Xiujuan.Remaining collapse resistance analysis of perforated gasing[J].Journal of the University of Petroleum,China,2004,28(1):77-80.
[16] 宗幼芄,赵怀文,部鹃.油层射孔段套管抗挤能力的实验研究[J].石油学报,1988,9(4):84-97.
ZONG Youwan,ZHAO Huaiwen,BU Juan.Collapse testing of perforated tubing[J].Acta Petrolei Sinica,1988,9(4):84-97.
[17] BELTRAN K,NETTO T.Collapse analysis of perforated pipes under external pressure[R].SPE 0617-0077,2017.
[18] 贾曦雨,王树山,马峰,等.射孔冲击相变对射孔套管抗挤性能的影响[J].石油学报,2017,38(3):348-355.
JIA Xiyu,WANG Shushan,MA Feng,et al.Influence of perforation shock-induced phase transformation on the collapsing strength of perforated casing[J].Acta Petrolei Sinica,2017,38(3):348-355.
[19] 杨野,彪仿俊,王瀚.螺旋射孔对水平缝水力压裂过程影响的数值模拟[J].石油学报,2012,33(6):1076-1079.
YANG Ye,BIAO Fangjun,WANG Han.A numerical study on effects of helical perforation on hydraulic fracturing of horizontal fractures[J].Acta Petrolei Sinica,2012,33(6):1076-1079.
[20] 杨龑栋,廖华林,牛继磊,等.冲击振动钻井工具流固耦合模拟试验[J].石油学报,2019,40(6):734-739.
YANG Yandong,LIAO Hualin,NIU Jilei,et al.Fluid-structure interaction simulation of rotary percussion drilling tool[J].Acta Petrolei Sinica,2019,40(6):734-739.
[21] 任福深,方天成,程晓泽,等.粒子射流冲击下破岩应力分析与破岩区域[J].石油学报,2018,39(9):1070-1080.
REN Fushen,FANG Tiancheng,CHENG Xiaoze,et al.Rock-breaking stress analysis and rock-breaking region under particle-waterjet impact[J].Acta Petrolei Sinica,2018,39(9):1070-1080.
[22] 李子丰.油气井管柱冲击动力问题研究概况和发展趋势[J].石油学报,2019,40(5):604-610.
LI Zifeng.Research situation and development trend of string dynamic shock in oil and gas wells[J].Acta Petrolei Sinica,2019,40(5):604-610.
[23] 王掌洪,王伯军,张士诚.非均匀载荷对高密射孔管抗挤强度的影响[J].天然气工业,2006,26(10):83-85.
WANG Zhanghong,WANG Bojun,ZHANG Shicheng.Effects of non-uniform loads on collapse strength of high-density perforated casing[J].Natural Gas Industry,2006,26(10):83-85.
[24] NETTO T A,KYRIAKIDES S.Dynamic performance of integral buckle arrestors for offshore pipelines.Part II:analysis[J].International Journal of Mechanical Sciences,2000,42(7):1425-1452.
[25] 薛小平,秦泗甜,吴玉虎.非线性分析[M].2版.北京:科学出版社,2018.
XUE Xiaoping,QIN Sitian,WU Yuhu. Nonlinear analysis[M]. 2nd Edition. Beijing:Science Press,2018.
[26] GONG Shunfeng,LI Gen.Buckle propagation of pipe-in-pipe systems under external pressure[J].Engineering Structures,2015,84:207-222.
[27] LEE L H,KYRIAKIDES S.On the arresting efficiency of slip-on buckle arrestors for offshore pipelines[J].International Journal of Mechanical Sciences,2004,46(7):1035-1055.
[28] API.Design,construction,operation,and maintenance of offshore hydrocarbon pipelines (limit state design):API RP 1111[S].Washington D C:API Publishing Services,2015.
[29] ABBASSIAN F,PARFITT S H L.Collapse and post collapse behaviour of tubulars:a simple approach[R].SPE 29458,1995.
[30] Submarine pipeline systems:DNVGL-ST-F101[S].Norway:Det Norske Verita,2017.
[31] D'ANGELO L,THORSEN H M,FYRILEIV O,et al.Safety level on different offshore pipeline design criteria:a comparison between DNV-OS-F101 and API RP-1111 codes[C]//Proceedings of the 2016 11th International Pipeline Conference.Calgary:ASME,2016. |