石油学报 ›› 2021, Vol. 42 ›› Issue (1): 105-118.DOI: 10.7623/syxb202101010
张遂安1,2, 刘欣佳1, 温庆志3, 张潇1, 赵威1, 袁玉1
收稿日期:
2019-07-17
修回日期:
2020-09-28
出版日期:
2021-01-25
发布日期:
2021-02-05
通讯作者:
张遂安,男,1957年7月生,1982年获山东矿业学院学士学位,现为中国石油大学(北京)教授,主要从事煤层气开发技术研究工作。
作者简介:
张遂安,男,1957年7月生,1982年获山东矿业学院学士学位,现为中国石油大学(北京)教授,主要从事煤层气开发技术研究工作。Email:sazhang@263.net
基金资助:
Zhang Sui'an1,2, Liu Xinjia1, Wen Qingzhi3, Zhang Xiao1, Zhao Wei1, Yuan Yu1
Received:
2019-07-17
Revised:
2020-09-28
Online:
2021-01-25
Published:
2021-02-05
摘要: 基于国内外煤层气增产改造技术发展历程的追溯,立足于压裂液体系、完井技术、压裂配套工具和气井管理方法4个方面,详细剖析了煤层气产业所取得的突出进展与形成的主体工艺。结合中国煤层气增产技术发展现状,提出了裂缝非线性动态扩展机理、地应力场反演与重定向理论、压裂液的流变调控和微地震数据噪声甄别等6项亟需攻关的科学问题,展望了中国煤层气增产技术的发展趋势:①多井联动的工厂化钻完井模式;②活性水为主体的多元化压裂液体系;③多岩性协同开发的合层压裂作业模式;④暂堵转向相结合的重复压裂技术;⑤先进高效的钻完井配套设备;⑥智能化的数据管理与远程决策系统。以期对攻克煤层气规模化开发的技术屏障,促进产业的智能化、一体化、配套化、经济化和持续化发展有所裨益。
中图分类号:
张遂安, 刘欣佳, 温庆志, 张潇, 赵威, 袁玉. 煤层气增产改造技术发展现状与趋势[J]. 石油学报, 2021, 42(1): 105-118.
Zhang Sui'an, Liu Xinjia, Wen Qingzhi, Zhang Xiao, Zhao Wei, Yuan Yu. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021, 42(1): 105-118.
[1] 刘成林,朱杰,车长波,等. 新一轮全国煤层气资源评价方法与结果[J].天然气工业,2009,29(11):130-132. LIU Chenglin,ZHU Jie,CHE Changbo,et al.Methodologies and results of the latest assessment of coalbed methane resources in China[J].Natural Gas Industry,2009,29(11):130-132. [2] 庚勐,陈浩,陈艳鹏,等.第4轮全国煤层气资源评价方法及结果[J].煤炭科学技术,2018,46(6):64-68. GENG Meng,CHEN Hao,CHEN Yanpeng,et al.Methods and results of the fourth round national CBM resources evaluation[J].Coal Science and Technology,2018,46(6):64-68. [3] 秦勇.中国煤层气成藏作用研究进展与述评[J].高校地质学报,2012,18(3):405-418. QIN Yong.Advances and reviews on coalbed methane reservoir formation in China[J].Geological Journal of China Universities,2012,18(3):405-418. [4] 张新民,张遂安,钟玲文,等.中国煤层甲烷[M].西安:陕西科学技术出版社,1991. ZHANG Xinmin,ZHANG Sui'an,ZHONG Lingwen,et al.China coalbed methane[M].Xi'an:Shanxi Science and Technology Press,1991. [5] 宋岩,马行陟,柳少波,等.沁水煤层气田成藏条件及勘探开发关键技术[J].石油学报,2019,40(5):621-634. SONG Yan,MA Xingzhi,LIU Shaobo,et al.Gas accumulation conditions and key exploration & development technologies in Qinshui coalbed methane field[J].Acta Petrolei Sinica,2019,40(5):621-634. [6] 张怀文,程维恒.煤层气开采工艺技术[J].新疆石油科技,2010,20(4):33-45. ZHANG Huaiwen,CHENG Weiheng.Development technology of coalbed methane[J].Xinjiang Petroleum Science and Technology,2010,20(4):33-45. [7] CABALLERO J.Drilling and completion technique selection methodolgy for coalbed methane wells[R].IPTC 17153,2013. [8] 李红伟,刘兵,李强,等.RFID技术在压裂滑套工具中的应用[J].传感器与微系统,2016,35(6):142-145. LI Hongwei,LIU Bing,LI Qiang,et al.Application of RFID technology in fracturing sleeve tool[J].Transducer and Microsystem Technologies,2016,35(6):142-145. [9] 王轲.四级多分支井技术应用进展与思考[J].西部探矿工程,2019,31(3):27-31. WANG Ke.Development and thinking on the application of multi-branch wells[J].West-China Exploration Engineering,2019,31(3):27-31. [10] 邱爱民,张波,邱爱利,等.煤层气多分支井成井失效分析及补救措施研究[J].非常规油气,2018,5(3):88-92. QIU Aimin,ZHANG Bo,QIU Aili,et al.Drilling failure analysis and remedial measures of coalbed methane multiple laterals wells[J].Unconventional Oil & Gas,2018,5(3):88-92. [11] 黄传艳,李双贵,李林涛,等.井下压裂暂堵工具用可溶金属材料研究进展[J].石油矿场机械,2019,48(1):68-72. HUANG Chuanyan,LI Shuanggui,LI Lintao,et al.Research progress on the dissolvable metal for downhole temporary plugging tools[J].Oil field Equipment,2019,48(1):68-72. [12] 刘辉,严俊涛,张诗通,等.可溶性桥塞技术应用现状及发展趋势[J].石油矿场机械,2018,47(5):65-68. LIU Hui,YAN Juntao,ZHANG Shitong,et al.Technical situation and development trend of dissolvable bridge plug[J].Oil Field Equipment,2018,47(5):65-68. [13] 丁庆新,侯世红,杜鑫芳,等.国内水平井压裂技术研究进展[J].石油机械,2016,44(12):78-82. DING Qingxin,HOU Shihong,DU Xinfang,et al.Advance of horizontal well fracturing technology in China[J].China Petroleum Machinery,2016,44(12):78-82. [14] 周俊然,王益山,田晓勇,等.电液式智能桥塞控制系统研究[J].工业控制计算机,2019,32(1):136-137. ZHOU Junran,WANG Yishan,TIAN Xiaoyong,et al.Study on the control system of electro-hydraulic intelligent bridge plug[J].Industrial Control Computer,2019,32(1):136-137. [15] 申志伟,李红伟,刘兵,等.基于RFID技术的压裂滑套控制系统的设计[J].中国石油勘探,2017,22(2):116-120. SHEN Zhiwei,LI Hongwei,LIU Bing,et al.Design of RFID-based sliding sleeve control system[J].China Petroleum Exploration,2017,22(2):116-120. [16] ADAN I.Radio frequency Identification (RFID)leads the way in the quest for intervention free upper completion installation[R].SPE 166182,2013:1-9. [17] CARPENTER C.Radio-frequency identification in intervention-free upper-completion installation[J].Journal of Petroleum Technology,2014,66(9):126-129. [18] 章娅菲,窦益华,祁珊珊.基于纳米流控系统的封隔器胶筒材料及其温变压变特性[J].西安石油大学学报:自然科学版,2018,33(5):107-112. ZHANG Yafei,DOU Yihua,QI Shanshan.Study on packer rubber material based on nanofluidic system and variation of its properties with temperature and pressure[J].Journal of Xi'an Shiyou University:Natural Science,2018,33(5):107-112. [19] KALRA S,WU Xingru.CO2 injection for enhanced gas recovery[R].SPE 169578,2014:1-15. [20] 王海柱,李根生,郑永,等.超临界CO2压裂技术现状与展望[J].石油学报,2020,41(1):116-126. WANG Haizhu,LI Gensheng,ZHENG Yong,et al.Research status and prospects of supercritical CO2 fracturing technology[J].Acta Petrolei Sinica,2020,41(1):116-126. [21] PALMER I,VAZIRI H,KHODAVERDIAN M,et al.Completions and stimulations for coalbed methane wells[R].SPE 30012,1995:583-595. [22] YU Hongguan,YUAN Jian,GUO Weijia,et al.A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection[J].International Journal of Coal Geology,2008,73(2):156-166. [23] 李兆敏,张昀,李松岩,等.清洁泡沫压裂液研究应用现状及展望[J].特种油气藏,2014,21(5):1-6. LI Zhaomin,ZHANG Yun,LI Songyan,et al.Current situation and prospect of research and application of clean foam fracturing fluid[J].Special Oil & Gas Reservoirs,2014,21(5):1-6. [24] 雷群,管保山,才博,等.储集层改造技术进展及发展方向[J].石油勘探与开发,2019,46(3):580-587. LEI Qun,GUAN Baoshan,CAI Bo,et al.Technological progress and prospects of reservoir stimulation[J].Petroleum Exploration and Development,2019,46(3):580-587. [25] 吴越琼.纳米颗粒改性粘弹性清洁压裂液的流变特性研究[D].杭州:浙江大学,2015. WU Yueqiong.The study on the rheological characteristics of viscoelastic fracturing fluid improved by nanoparticles[D].Hangzhou:Zhejiang University,2015. [26] 赵晓航.纳米颗粒改性VES压裂液的工程特性及分子动力学模拟研究[D].杭州:浙江大学,2018. ZHAO Xiaohang.The study of engineering characteristics and molecular dynamics simulation on viscoelastic (VES)fracturing fluids modified by nanoparticles[D].Hangzhou:Zhejiang University,2018. [27] 杨兆中,朱静怡,李小刚,等.含纳米颗粒的黏弹性表面活性剂泡沫压裂液性能[J].科学技术与工程,2018,18(10):42-47. YANG Zhaozhong,ZHU Jingyi,LI Xiaogang,et al.The performance of viscoelastic foamed fracturing fluids with nanoparticles[J].Science Technology and Engineering,2018,18(10):42-47. [28] 鄢宇杰,付荣耀,李楠,等.电弧压裂技术研究现状与发展[J].高压电器,2019,55(9):71-77. YAN Yujie,FU Rongyao,LI Nan,et al.Research status and development of arc fracturing technology[J].High Voltage Apparatus,2019,55(9):71-77. [29] 卢波.冲击波增透煤层装备在煤矿中的应用[J].煤矿安全,2019,50(7):187-190. LU Bo.Application of shock wave permeability improvement technology in coal mine[J].Safety in Coal Mine,2019,50(7):187-190. [30] 豆宁辉,何汉平,陈向军,等.国内外智能完井技术适应性分析及设计实例[J].钻采工艺,2018,41(3):58-60. DOU Ninghui,HE Hanping,CHEN Xiangjun,et al.Analysis on adaptability of completion technology in China and abroad and its design example[J].Drilling & Production Technology,2018,41(3):58-60. [31] 王洪峰,王胜军,朱松柏,等."互联网+"时代智慧油气田建设的构想与探索[J].油气田地面工程,2018,37(8):1-5. WANG Hongfeng,WANG Shengjun,ZHU Songbai,et al.Conception and exploration of the smart oil and gas field construction in "Internet+" era[J].Oil-Gas Field Surface Engineering,2018,37(8):1-5. [32] 石油知识杂志社.世界各国的煤层气开发[EB/OL].中国石油百科,(2017-05-03).http://center.cnpc.com.cn/bk/system/2016/08/26/001607995.shtml. Petroleum Knowledge Magazine.Coalbed methane development in countries around the world[EB/OL].China Petroleum Encyclopedia,(2017-05-03).http://center.cnpc.com.cn/bk/system/2016/08/26/001607995.shtml. [33] 财经新闻.俄罗斯天然气工业公司开始开采煤层气[N/OL].Sputnik,(2010-01-19).http://sputniknews.cn/russia/2010011942683885/. Financial News.Gazprom starts mining CBM[N/OL].Sputnik,(2010-01-19).http://sputniknews.cn/russia/2010011942683885/. [34] 吕玉民,王红岩,汤达祯,等.俄罗斯三大煤盆地煤层气地质特征及开发条件分析[J].资源与产业,2012,14(1):86-91. LÜ Yumin,WANG Hongyan,TANG Dazhen,et al.Geological features and developing conditions of coalbed methane in Russia's three coal basins[J].Resources & Industries,2012,14(1):86-91. [35] PALMER I D.Review of coalbed methane well stimulation[R].SPE 22395,1992:679-703. [36] MAZUMDER S,JIANG J,SHARMA V,et al.Production data analysis of CBM wells in Surat basin[R].SPE 167076,2013:1-14. [37] 王磊,樊太亮,杜云星,等.澳大利亚Bowen与Surat盆地煤层气特征研究[J].中国煤层气,2019,16(5):28-31. WANG Lei,FAN Tailiang,DU Yunxing,et al.Research on coal seam gas (CSG)characteristic of Bowen and Surat basin in Australia[J].China Coalbed Methane,2019,16(5):28-31. [38] DONG Zhenzhen,HOLDITCH S A,AYERS W B,et al.Probabilistic estimate of global coalbed methane recoverable resources[R].SPE 169006,2015:148-156. [39] GATENS M.Coalbed methane development:Practices and progress in Canada[J].Journal of Canadian Petroleum Technology,2005,44(8):16-21. [40] JEU S J,LOGAN T L,MCBANE R A.Exploitation of deeply buried coalbed methane using different hydraulic fracturing techniques in the Piceance basin,Colorado and San Juan Basin New Mexico[R].SPE 18253,1988. [41] 杨兆中,彭鹏,张健,等.煤层氮气泡沫压裂液研究与应用[J].油气藏评价与开发,2016,6(1):78-82. YANG Zhaozhong,PENG Peng,ZHANG Jian,et al.Research and application of nitrogen foam fracturing fluid in coalbed methane[J].Reservoir Evaluation and Development,2016,6(1):78-82. [42] LESHCHYSHYN T T,RIEB B A,THOMSON J T.The production success of proppant stimulation on horseshoe canyon coal bed methane and sandstone commingled wells[R].PETSOC 2005177,2005:1-5. [43] 许耀波.液氮伴注辅助水力压裂技术在构造煤储层煤层气增产中的应用研究[J].中国煤层气,2012,9(4):29-31. XU Yaobo.Study on application of liquid nitrogen injection assisted hydro-fracturing technique to enhanced production of structural coal reservoir[J].China Coalbed Methane,2012,9(4):29-31. [44] 李贵川,张锦虎,邓拓,等.煤层气水平井注氮增产改造技术[J].煤炭科学技术,2016,44(5):54-58. LI Guichuan,ZHANG Jinhu,DENG Tuo,et al.Gas output improvement and reconstruction technology of coalbed methane horizontal well by nitrogen injection[J].Coal Science and Technology,2016,44(5):54-58. [45] 刘磊.煤层气井液氮伴注辅助水力压裂技术研究[J].煤炭技术,2018,37(2):201-203. LIU Lei.Research on injecting liquid nitrogen with technology of hydraulic fracturing in CBM wells[J].Coal Technology,2018,37(2):201-203. [46] ZHENG Donghong,JIN Xianpeng,ZHOU Hongyan,et al.Fracturing technology of coalbed methane in Qinshui Basin[R].SPE 167108,2013. [47] 秦勇,袁亮,胡千庭,等.我国煤层气勘探与开发技术现状及发展方向[J].煤炭科学技术,2012,40(10):1-6. QIN Yong,YUAN Liang,HU Qianting,et al.Status and development orientation of coal bed methane exploration and development technology in China[J].Coal Science and Technology,2012,40(10):1-6. [48] LI Hangyu,LAU H C,HUANG Shan.Coalbed methane development in China:Engineering challenges and opportunities[R].SPE 186289,2017. [49] THAKUR P,SCHATZEL S,AMINIAN K.Coal bed methane:from prospect to pipeline[M].Pennsylvania,USA:Elsevier,2014. [50] PALMER I D.The permeability factor in coalbed methane well completions and production[R].SPE 131714,2010. [51] BYBEE K.A parametric study of horizontal and multilateral wells in Coalbed-Methane reservoirs[J].Journal of Petroleum Technology, 2006,58(8):71-72. [52] VON SCHOENFELDT H,ZUPANIK J,WIGHT D R.Unconventional drilling[C].Alabama:2004 International Coalbed Methane Symposium Proceedings,2004. [53] 董建辉,王先国,乔磊,等.煤层气多分支水平井钻井技术在樊庄区块的应用[J].煤田地质与勘探,2008,36(4):21-24. DONG Jianhui,WANG Xianguo,QIAO Lei,et al.Application of CBM multi-branch horizontal well for drilling technology in Fanzhuang Block[J].Coal Geology & Exploration,2008,36(4):21-24. [54] 杨勇,崔树清,倪元勇,等.煤层气仿树形水平井的探索与实践[J].天然气工业,2014,34(8):92-96. YANG Yong,CUI Shuqing,NI Yuanyong,et al.A new attempt of a CBM tree-like horizontal well:a pilot case of Well ZS 1P-5H in the Qinshui Basin[J].Natural Gas Industry,2014,34(8):92-96. [55] 李玉伟.割理煤岩力学特性与压裂起裂机理研究[D].大庆:东北石油大学,2014. LI Yuwei.Study on mechanical behavior and fractures cracking mechanism in hydraulic fracturing of coalbed with cleats[D].Daqing:Northeast Petroleum University,2014. [56] 孙茂远,杨陆武,刘申平.煤层气基础理论研究的关键科学问题[J].煤炭科学技术,2002,30(9):46-48. SUN Maoyuan,YANG Luwu,LIU Shenping.Key scientific issues of basic theoretic research for coal bed methane[J].Coal Science and Technology,2002,30(9):46-48. [57] 赵金洲,尹庆,李勇明.中国页岩气藏压裂的关键科学问题[J].中国科学:物理学力学天文学,2017,47(11):114602. ZHAO Jinzhou,YIN Qing,LI Yongming.Key scientific issues of hydraulic fracturing in Chinese shale gas reservoir[J].SCIENTIA SINICA Physica,Mechanica & Astronomica,2017,47(11):114602. [58] 张然.裂缝性致密油储层压裂裂缝扩展与支撑机理研究[D].北京:中国石油大学(北京),2017. ZHANG Ran.Fractures propagation and propping mechanism in fractured tight oil Reservoir[D].Beijing:China University of Petroleum,2017. [59] 黄荣樽,陈勉,邓金根,等.泥页岩井壁稳定力学与化学的藕合研究[J].钻井液与完井液,1995,12(3):15-21. HUANG Rongzun,CHEN Mian,DENG Jingen,et al.Study on shale stability of wellbore by mechanic coupling with chemistry method[J].Drilling & Completion Fluids,1995,12(3):15-21. [60] 王成虎.地应力主要测试和估算方法回顾与展望[J].地质论评,2014,60(5):971-996. WANG Chenghu.Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass[J].Geological Review,2014,60(5):971-996. [61] 张宏源,黄中伟,李根生,等.煤岩径向井-脉动水力压裂裂缝扩展规律与声发射响应特征[J].石油学报,2018,39(4):472-481. ZHANG Hongyuan,HUANG Zhongwei,LI Gensheng,et al.Fracture propagation laws and acoustic emission response characteristics of coal radial well-pulse hydraulic fracturing[J].Acta Petrolei Sinica,2018,39(4):472-481. [62] 马新军.泡沫液在多孔介质中渗流特性的可视化分析及其机理研究[D].青岛:青岛科技大学,2014. MA Xinjun.The visualization analysis and mechanism research of foam flow characteristics in porous media[D].Qingdao:Qingdao University of Science & Technology,2014. [63] 刘岩,张遂安,石惠宁,等.支撑剂嵌入不同坚固性煤岩导流能力实验研究[J].石油钻采工艺,2013,35(2):75-78. LIU Yan,ZHANG Sui'an,SHI Huining,et al.Experimental research on flow conductivity of different firmness coal rock embedded by proppant[J].Oil Drilling & Production Technology,2013,35(2):75-78. [64] 卢聪,郭建春,王文耀,等.支撑剂嵌入及对裂缝导流能力损害的实验[J].天然气工业,2008,28(2):99-101. LU Cong,GUO Jianchun,WANG Wenyao,et al.Experimental research on proppant embedment and its damage to fractures conductivity[J].Natural Gas Industry,2008,28(2):99-101. [65] 赵金洲,何弦桀,李勇明.支撑剂嵌入深度计算模型[J].石油天然气学报(江汉石油学院学报),2014,36(12):209-212. ZHAO Jinzhou,HE Xianjie,LI Yongming.A calculation model of proppant embedment depth[J].Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute),2014,36(12):209-212. [66] CHEN Ming,ZHANG Shicheng,LIU Ming,et al.Calculation method of proppant embedment depth in hydraulic fracturing[J].Petroleum Exploration and Development,2018,45(1):159-166. [67] 徐加祥,丁云宏,杨立峰,等.压裂支撑剂在迂曲微裂缝中输送与分布规律[J].石油学报,2014,40(8):965-974. XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Transportation and distribution laws of proppants in tortuous micro-fractures[J].Acta Petrolei Sinica,2014,40(8):965-974. [68] BOWIE B.Machine learning applied to optimize Duvernay well performance[R].SPE 189823,2018. [69] SHADRAVAN A,TARRAHI M,AMANI M.Intelligent tool to design drilling,spacer,cement slurry,and fracturing fluids by use of machine-learning algorithms[J].SPE Drilling & Completion,2017,32(2):131-140. [70] 赵博雄,王忠仁,刘瑞,等.国内外微地震监测技术综述[J].地球物理学进展,2014,29(4):1882-1888. ZHAO Boxiong,WANG Zhongren,LIU Rui,et al.Review of microseismic monitoring technology research[J].Progress in Geophysics,2014,29(4):1882-1888. [71] 崔庆辉,尹成,刁瑞,等.地面微地震监测数据处理难点及对策[J].油气藏评价与开发,2017,7(1):7-13. CUI Qinghui,YIN Cheng,DIAO Rui,et al.Difficulties and countermeasure of surface microseismic monitoring data processing[J].Reservoir Evaluation and Development,2017,7(1):7-13. [72] 吴军.地面微地震监测数据处理难点及对策[J].环境与发展,2017,29(9):127. WU Jun.Difficulties and countermeasures of ground microseismic monitoring data processing[J].Environment and Development,2017,29(9):127. [73] 徐凤银,肖芝华,陈东,等.我国煤层气开发技术现状与发展方向[J].煤炭科学技术,2019,47(10):205-215. XU Fengyin,XIAO Zhihua,CHEN Dong,et al.Current status and development direction of coalbed methane exploration technology in China[J].Coal Science and Technology,2019,47(10):205-215. [74] 康毅力,田键,罗平亚,等.致密油藏提高采收率技术瓶颈与发展策略[J].石油学报,2020,41(4):467-477. KANG Yili,TIAN Jian,LUO Pingya,et al.Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J].Acta Petrolei Sinica,2020,41(4):467-477. [75] 何明舫,马旭,张燕明,等.苏里格气田"工厂化"压裂作业方法[J].石油勘探与开发,2014,41(3):349-353. HE Mingfang,MA Xu,ZHANG Yanming,et al.A factory fracturing model of multi-well cluster in Sulige gas field,NW China[J].Petroleum Exploration and Development,2014,41(3):249-353. [76] 刘克强,王培峰,贾军喜.我国工厂化压裂关键地面装备技术现状及应用[J].石油机械,2018,46(4):101-106. LIU Keqiang,WANG Peifeng,JIA Junxi.Status and applications of surface equipment for factory fracturing in China[J].China Petroleum Machinery,2018,46(4):101-106. [77] 刘欣佳,张遂安,靳建虎,等.煤成(层)气资源综合开发中的合层压裂可行性评价[J].煤炭学报,2018,43(6):1687-1693. LIU Xinjia,ZHANG Sui'an,JIN Jianhu,et al.Feasibility evaluation of commingle fracturing in the integrated development of coal-derived gas resources[J].Journal of China Coal Society,2018,43(6):1687-1693. [78] OLSEN T N,BRATTON T R,VAN TANNER K V,et al.Application of indirect fracturing for efficient stimulation of coalbed methane[R].SPE 107985,2007:1-10. [79] LESHCHYSHYN T T,RIEB B A,THOMSON J T.The Production success of proppant stimulation on horseshoe canyon coal bed methane and sandstone commingled wells[R].PETSOC 2005177,2005:1-7. [80] 尹中山,蒋琦,熊建龙,等.川南煤田龙潭组煤系泥页岩气与煤层气组合模式及合采前景分析[J].中国煤炭地质,2019,31(5):30-35. YIN Zhongshan,JIANG Qi,XIONG Jianlong,et al.Longtan formation coal measures argillutite gas and CBM association mode and joint exploitation prospect analysis in southern Sichuan coalfield[J].Coal Geology of China,2019,31(5):30-35. [81] 李辉,马遵敬,王旭东,等.沁水盆地南部地区砂体与煤层空间叠置特征及其在煤层气和致密气合采开发中的意义[J].科学技术与工程,2019,19(7):70-77. LI Hui,MA Zunjing,WANG Xudong,et al.Characteristics of spatial superimposition between sandbody and coal seam and its implications to commingling production for coal-bed methane and tight gas in the southern Qinshui Basin[J].Science Technology and Engineering,2019,19(7):70-77. [82] 杨建超,李贵红,刘钰辉,等.晋城地区煤层气井多层合采效果评价[J].煤田地质与勘探,2019,47(6):26-31. YANG Jianchao,LI Guihong,LIU Yuhui,et al.Evaluation of coalbed methane drainage effect for multi-target seams in Jincheng region[J].Coal Geology & Exploration,2019,47(6):26-31. [83] 杨兆彪,李洋阳,秦勇,等.煤层气多层合采开发单元划分及有利区评价[J].石油勘探与开发,2019,46(3):559-568. YANG Zhaobiao,LI Yangyang,QIN Yong,et al.Development unit division and favorable area evaluation for joint mining coalbed methane[J]. Petroleum Exploration and Development,2019,46(3):559-568. [84] 孟尚志,侯冰,张健,等.煤系"三气"共采产层组压裂裂缝扩展物模试验研究[J].煤炭学报,2016,41(1):221-227. MENG Shangzhi,HOU Bing,ZHANG Jian,et al.Experimental research on hydraulic fracture propagation through mixed layers of shale,tight sand and coal seam[J].Journal of China Coal Society,2016,41(1):221-227. [85] 姜伟,管保山,李阳,等.新型水溶性暂堵剂在重复压裂中的暂堵转向效果[J].钻井液与完井液,2017,34(6):100-104. JIANG Wei,GUAN Baoshan,LI Yang,et al.A New water soluble temporary plugging agent and its temporary plugging and diverting effects in re-fracturing[J].Drilling Fluid & Completion Fluid,2017,34(6):100-104. [86] 杨国威,白建文,池晓明,等.可降解纤维压裂暂堵剂表面改性与性能研究[J].应用化工,2014,43(8):1431-1434. YANG Guowei,BAI Jianwen,CHI Xiaoming,et al.Study on performance and surface modification of the degradable fiber plugging agent hydraulic fracturing[J].Applied Chemical Industry,2014,43(8):1431-1434. [87] 夏海帮.页岩气井双暂堵压裂技术研究与现场试验[J].石油钻探技术,2020,48(3):90-96. XIA Haibang.The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J].Petroleum Drilling Techniques,2020,48(3):90-96. [88] 秦旭,曾斌,李文洪,等.页岩气压裂用暂堵剂优化设计[J].广州化工,2019,47(6):109-112. QIN Xu,ZENG Bin,LI Wenhong,et al.Optimized design of temporary plugging agent for shale gas hydraulic fracturing[J].Guangzhou Chemical Industry,2019,47(6):109-112. [89] 刘敏,康力,李明,等.页岩气暂堵压裂技术在威远龙马溪组的应用[J].天然气技术与经济,2018,12(2):45-47. LIU Min,KANG Li,LI Ming,et al.Application of shale gas temporary plugging fracturing technology in Weiyuan Longmaxi Formation[J].Natural Gas Technology and Economy,2018,12(2):45-47. [90] 马俊强,轩跃刚,崔骏.煤层气井层内暂堵转向压裂技术应用分析[J].中国石油和化工标准与质量,2020(11):193-194. MA Junqiang,XUAN Yuegang,CUI Jun.Application analysis of temporary plugging steering fracturing technology in CBM well[J].China Petroleum and Chemical Standard and Quality,2020(11):193-194. [91] 李特社,胡刚,王少雷,等.黔西北多层薄煤储层暂堵转向压裂技术应用[J].煤田地质与勘探,2016,46(2):15-21. LI Teshe,HU Gang,WANG Shaolei,et al.Application of temporary plugging and diverting fracturing technology for multiple and thin coal reservoir in northwestern Guizhou[J].Coal Geology & Exploration,2018,46(2):15-21. [92] 郑力会,崔金榜,聂帅帅,等.郑X井重复压裂非产水煤层绒囊流体暂堵转向试验[J].钻井液与完井液,2016,33(5):103-108. ZHENG Lihui,CUI Jinbang,NIE Shuaishuai,et al.Temporary plugging diverting test with fuzzy ball fluids in non-water producing coal beds in re-fracturing well Zheng-X[J].Drilling Fluid & Completion Fluid,2016,33(5):103-108. [93] 周拿云.煤层气井冰晶暂堵压裂可行性实验与理论研究[D].成都:西南石油大学,2013. ZHOU Nayun.Experimental and theoretical studies on the feasibility of the ice temporary plugging fracturing of CBM well[D].Chengdu:Southwest Petroleum University,2013. [94] 田野.油气变革下一站:技术致胜——中国石油2019年领导干部会议关于加快推进科技创新战略综述[J].中国石油企业,2019(8):19-24. TIAN Ye.The next stop of oil and gas reform:Winning by technology-a summary of CNPC's 2019 leading cadres conference on accelerating the strategy of science and technology innovation[J].China Petroleum Enterprise,2019(8):19-24. [95] 郭长杰,王浩翔,刘晓,等.浅析机器学习技术在油气行业的应用场景[J].信息系统工程,2017(5):100-103. GUO Changjie,WANG Haoxiang,LIU Xiao,et al.Analyses on the application of machine learning technology in oil and gas industry[J].China CIO News,2017(5):100-103. [96] 袁泽波,钱浩东,刘举,等."大数据"在塔里木试油一体化设计平台的应用与实践[J].钻采工艺,2017,40(6):108-110. YUAN Zebo,QIAN Haodong,LIU Ju,et al.Practice and application of "Big Data" in the integrated design platform in Talimu oil field[J]. Drilling & Production Technology,2017,40(6):108-110. |
[1] | 张群, 孙四清, 降文萍. 碎软低渗煤层煤矿区煤层气勘探开发关键技术及发展方向[J]. 石油学报, 2024, 45(5): 855-865. |
[2] | 郭晨, 李瑞腾, 秦勇, 卢玲玲, 易同生, 陈贞龙, 袁航, 高为, 程曦. 煤层气井产出水演化路径及产量判识意义——以黔西地区织金区块为例[J]. 石油学报, 2024, 45(3): 517-530. |
[3] | 宋永, 唐勇, 何文军, 龚德瑜, 晏奇, 陈棡, 单祥, 刘超威, 刘刚, 秦志军, 阿布力米提·依明, 尤新才, 任海姣, 白雨, 高岗. 准噶尔盆地油气勘探新领域、新类型及勘探潜力[J]. 石油学报, 2024, 45(1): 52-68. |
[4] | 李志军, 肖阳, 田建章, 李晓燕, 王元杰, 王海燕, 焦亚先, 汤小琪, 贾颖超, 任春玲, 严梦颖, 王成云, 任艺. 渤海湾盆地冀中坳陷新领域、新类型油气勘探潜力及有利方向[J]. 石油学报, 2024, 45(1): 69-98. |
[5] | 常德双, 王贵重, 温铁民, 李道善, 胡少华, 李凯, 刘冬民. 中国前陆冲断带油气地震勘探技术及发展方向[J]. 石油学报, 2024, 45(1): 276-294. |
[6] | 魏迎春, 孟涛, 张劲, 王安民, 王亚东. 不同煤体结构煤储层与煤层气井产出煤粉特征的关系——以鄂尔多斯盆地东缘柳林区块为例[J]. 石油学报, 2023, 44(6): 1000-1014. |
[7] | 沈华, 杨亮, 韩昊天, 王颖, 邢济麟, 薛松, 刘红超. 松辽盆地南部油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2104-2121. |
[8] | 刘惠民, 高阳, 秦峰, 杨怀宇. 渤海湾盆地济阳坳陷油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2141-2159. |
[9] | 周立宏, 陈长伟, 崔宇, 杨飞, 刘国全, 李宏军, 邹磊落, 王文庆, 周凤春. 渤海湾盆地黄骅坳陷油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2160-2178. |
[10] | 罗平亚, 朱苏阳. 中国建立千亿立方米级煤层气大产业的理论与技术基础[J]. 石油学报, 2023, 44(11): 1755-1763. |
[11] | 徐凤银, 王成旺, 熊先钺, 徐博瑞, 王红娜, 赵欣, 江山, 宋伟, 王玉斌, 陈高杰, 吴鹏, 赵靖舟. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报, 2023, 44(11): 1764-1780. |
[12] | 康永尚, 闫霞, 皇甫玉慧, 张兵, 邓泽. 深部超饱和煤层气藏概念及主要特点[J]. 石油学报, 2023, 44(11): 1781-1790. |
[13] | 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811. |
[14] | 熊先钺, 闫霞, 徐凤银, 李曙光, 聂志宏, 冯延青, 刘莹, 陈明, 孙俊义, 周科, 李春虎. 深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报, 2023, 44(11): 1812-1826,1853. |
[15] | 刘建忠, 朱光辉, 刘彦成, 晁巍巍, 杜佳, 杨琦, 米洪刚, 张守仁. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策——以临兴—神府区块为例[J]. 石油学报, 2023, 44(11): 1827-1839. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1