[1] 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J].石油勘探与开发, 2023, 50(4):669-682. XU Fengyin, HOU Wei, XIONG Xianyue, et al.The status and development strategy of coalbed methane industry in China[J].Petroleum Exploration and Development, 2023, 50(4):669-682. [2] 秦勇, 申建, 史锐.中国煤系气大产业建设战略价值与战略选择[J].煤炭学报, 2022, 47(1):371-387. QIN Yong, SHEN Jian, SHI Rui.Strategic value and choice on construction of large CMG industry in China[J].Journal of China Coal Society, 2022, 47(1):371-387. [3] 孙钦平, 赵群, 姜馨淳, 等.新形势下中国煤层气勘探开发前景与对策思考[J].煤炭学报, 2021, 46(1):65-76. SUN Qinping, ZHAO Qun, JIANG Xinchun, et al.Prospects and strategies of CBM exploration and development in China under the new situation[J].Journal of China Coal Society, 2021, 46(1):65-76. [4] 徐凤银, 闫霞, 李曙光, 等.鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J].煤田地质与勘探, 2023, 51(1):115-130. XU Fengyin, YAN Xia, LI Shuguang, et al.Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J].Coal Geology & Exploration, 2023, 51(1):115-130. [5] 牛小兵, 赵伟波, 史云鹤, 等.鄂尔多斯盆地本溪组天然气成藏条件及勘探潜力[J].石油学报, 2023, 44(8):1240-1257. NIU Xiaobing, ZHAO Weibo, SHI Yunhe, et al.Natural gas accumulation conditions and exploration potential of Benxi Formation in Ordos Basin [J].Acta Petrolei Sinica, 2023, 44(8):1240-1257. [6] 徐凤银, 王成旺, 熊先钺, 等.深部(层)煤层气成藏模式与关键技术对策-以鄂尔多斯盆地东缘为例[J].中国海上油气, 2022, 34(4):30-42. XU Fengyin, WANG Chengwang, XIONG Xianyue, et al.Dee (layer)coalbed methane reservoir forming modes and key technical countermeasures:taking the eastern margin of Ordos Basin as an example[J].China Offshore Oil and Gas, 2022, 34(4):30-42. [7] 秦勇, 申建, 王宝文, 等.深部煤层气成藏效应及其耦合关系[J].石油学报, 2012, 33(1):48-54. QIN Yong, SHEN Jian, WANG Baowen, et al.Accumulation effects and coupling relationship of deep coalbed methane[J].Acta Petrolei Sinica, 2012, 33(1):48-54. [8] 秦勇, 申建.论深部煤层气基本地质问题[J].石油学报, 2016, 37(1):125-136. QIN Yong, SHEN Jian.On the fundamental issues of deep coalbed methane geology[J].Acta Petrolei Sinica, 2016, 37(1):125-136. [9] 魏迎春, 孟涛, 张劲, 等.不同煤体结构煤储层与煤层气井产出煤粉特征的关系——以鄂尔多斯盆地东缘柳林区块为例[J].石油学报, 2023, 44(6):1000-1014. WEI Yingchun, MENG Tao, ZHANG Jin, et al.Relationship between coal reservoirs with different coal structures and the characteristics of coal fines produced in CBM wells:a case study of Liulin block at the eastern margin of Ordos Basin[J].Acta Petrolei Sinica, 2023, 44(6):1000-1014. [10] 黄飞飞, 蒲春生, 陆雷超, 等.胍胶压裂液高效破胶降解剂体系研究[J].应用化工, 2021, 50(5):1168-1172. HUANG Feifei, PU Chunsheng, LU Leichao, et al.Complex agent system used for the effectively breaking and degrading of the guar gum fracturing fluid[J].Applied Chemical Industry, 2021, 50(5):1168-1172. [11] 张遂安, 刘欣佳, 温庆志, 等.煤层气增产改造技术发展现状与趋势[J].石油学报, 2021, 42(1):105-118. ZHANG Sui'an, LIU Xinjia, WEN Qingzhi, et al.Development situation and trend of stimulation and reforming technology of coalbed methane[J].Acta Petrolei Sinica, 2021, 42(1):105-118. [12] WANG Tongyu, YE Jianghong.Rheological and fracturing characteristics of a cationic guar gum[J].International Journal of Biological Macromolecules, 2023, 224:196-206. [13] THOMBARE N, JHA U, MISHRA S, et al.Guar gum as a promising starting material for diverse applications:a review[J].International Journal of Biological Macromolecules, 2016, 88:361-372. [14] WANG Fuhua, SUN Zezhuang, SHI Xian, et al.Mechanism analysis of hydroxypropyl guar gum degradation in fracture flowback fluid by homogeneous sono-Fenton process[J].Ultrasonics Sonochemistry, 2023, 93:106298. [15] 倪小明, 于芸芸, 何景朝.煤层气井HPG压裂液低温破胶剂实验优选[J].煤炭学报, 2016, 41(5):1173-1179. NI Xiaoming, YU Yunyun, HE Jingzhao.Experimental selection of low-temperature gel breaker for HPG fracturing fluid in CBM wells[J].Journal of China Coal Society, 2016, 41(5):1173-1179. [16] 阿克巴尔·卡得拜, 孙钰钧, 王静, 等.含聚表采油污水处理技术研究进展[J].辽宁化工, 2021, 50(5):627-633. KADEBAI Akebaer, SUN Yujun, WANG Jing, et al.Research progress of treatment technology of oil production wastewater containing polymer and surfactant[J].Liaoning Chemical Industry, 2021, 50(5):627-633. [17] 陆争光.油气田压裂返排液处理技术探讨[J].环境科学与管理, 2016, 41(5):104-107. LU Zhengguang.Discussion on treatment technology of fracturing flowback water in oil and gas field[J].Environmental Science and Management, 2016, 41(5):104-107. [18] ESTRADA J M, BHAMIDIMARRI R.A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing[J].Fuel, 2016, 182:292-303. [19] LUEK J L, GONSIOR M.Organic compounds in hydraulic fracturing fluids and wastewaters:a review[J].Water Research, 2017, 123:536-548. [20] 刘合, 肖丹凤.新型低损害植物胶压裂液及其在低渗透储层中的应用[J].石油学报, 2008, 29(6):880-884. LIU He, XIAO Danfeng.A novel low-damage vegetable gum-based fracturing fluid and its application in low-permeability reservoirs[J].Acta Petrolei Sinica, 2008, 29(6):880-884. [21] 徐栋, 朱卫平, 白坤森, 等.胍胶压裂液体系有机硼交联剂合成研究进展[J].高分子通报, 2023, 36(2):200-212. XU Dong, ZHU Weiping, BAI Kunsen, et al.Research progress on synthesis of organic boron crosslinking agent in guar gum fracturing fluid system[J].Polymer Bulletin, 2023, 36(2):200-212. [22] 赵博, 崔荣龙, 张来喜, 等.低渗储层胍胶压裂液交联性能的影响因素及机理探讨[J].应用化工, 2021, 50(3):654-659. ZHAO Bo, CUI Ronglong, ZHANG Laixi, et al.Investigation of influencing factors and mechanism of rheology of guar fracturing fluid in low permeability shale reservoir[J].Applied Chemical Industry, 2021, 50(3):654-659. [23] DONMOYER S, AGRAWAL V, SHARMA S, et al.Effect of oxidative breakers on organic matter degradation, contaminant mobility and critical mineral release during shale-fracturing fluid interactions in the Marcellus Shale[J].Fuel, 2023, 331:125678. [24] 中国石油天然气总公司.植物胶及其改性产品性能测定方法:SY/T 6074-1994[S].北京:石油工业出版社, 1994. China National Petroleum Corporation.Method for determining the performance of vegetable gum and its modified products:SY/T 6074-1994 [S].Beijing:Petroleum Industry Press, 1994 [25] 国家能源局.水基压裂液性能评价方法:SY/T 5107-2016 [S].北京:石油工业出版社, 2016. National Energy Administration.The evaluation measurement for properties of water-based fracturing fluids:SY/T 5107-2016[S].Beijing:Petroleum Industry Press, 2008. [26] 张传保, 王彦玲, 陈孟鑫, 等.耐高温胍胶压裂液及其对储层的伤害机理研究进展[J].化工进展, 2022, 41(11):5912-5924. ZHANG Chuanbao, WANG Yanling, CHEN Mengxin, et al.Research progress on high temperature resistant guar gum fracturing fluid and its damage mechanism to reservoirs[J].Chemical Industry and Engineering Progress, 2022, 41(11):5912-5924. [27] 云箭, 卞卫国, 刘昌升, 等.几种重点元素对胍胶压裂液性能影响的研究[J].环境保护前沿, 2021, 11(4):845-855. YUN Jian, BIAN Weiguo, LIU Changsheng, et al.Study on the influence of several key elements on the performance of guanidine gel fracturing fluid[J].Advances in Environmental Protection, 2021, 11(4):845-855. [28] 魏云, 沈秀伦, 周伟, 等.准噶尔盆地砂砾岩储层压裂液损害及保护措施[J].钻井液与完井液, 2022, 39(4):508-515. WEI Yun, SHEN Xiulun, ZHOU Wei, et al.Damage of sandy conglomerate reservoirs in Dzungar Basin by fracturing fluids and measures for protection of the reservoir damage[J].Drilling Fluid and Completion Fluid, 2022, 39(4):508-515. [29] 张华, 吴百春, 张晓飞, 等.电脱盐废水电絮凝破乳分离机制及工艺优化[J].环境工程学报, 2023, 17(5):1451-1462. ZHANG Hua, WU Baichun, ZHANG Xiaofei, et al.Mechanism and process optimization of electrocoagulation for desalter wastewater demulsification separation[J].Chinese Journal of Environmental Engineering, 2023, 17(5):1451-1462. [30] CHEN Wen, WESTERHOFF P, LEENHEER J A, et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology, 2003, 37(24):5701-5710. [31] 高楚玥, 张安龙, 陈甜甜, 等.油田压裂返排液的厌氧处理特性[J].环境工程学报, 2021, 15(10):3378-3386. GAO Chuyue, ZHANG Anlong, CHEN Tiantian, et al.Anaerobic treatment characteristics of oilfield fracturing flowback fluid[J].Chinese Journal of Environmental Engineering, 2021, 15(10):3378-3386. [32] 解程超, 王胜, 颜鹏, 等.含煤地层植物胶冲洗液改性及机理研究[J].煤田地质与勘探, 2023, 51(6):207-214. XIE Chengchao, WANG Sheng, YAN Peng, et al.Study on modification of plant gum flushing fluid in coal-bearing strata and its mechanism[J].Coal Geology & Exploration, 2023, 51(6):207-214. [33] SPEIGHT J G.Environmental organic chemistry for engineers[M].Amsterdam:Butterworth-Heinemann, 2017:203-261. [34] TURAN N B, ERKAN H S, ENGIN G O.The investigation of shale gas wastewater treatment by electro-Fenton process:statistical optimization of operational parameters[J].Process Safety and Environmental Protection, 2017, 109:203-213. [35] TER BRAAK G J F.Redundancy analysis includes analysis of variance-simultaneous component analysis (ASCA)and outperforms its extensions [J].Chemometrics and Intelligent Laboratory Systems, 2023, 240:104898. [36] 国家能源局.水基压裂液技术要求:SY/T 7627-2021[S].北京:石油工业出版社, 2021. National Energy Administration.Technical requirements of water-based fracturing fluid:SY/T 7627-2021[S].Beijing:Petroleum Industry Press, 2021. |