[1] 孙龙德,邹才能,贾爱林,等. 中国致密油气发展特征与方向[J].石油勘探与开发,2019,46(6):1015-1026. SUN Longde,ZOU Caineng,JIA Ailin,et al.Development characteristics and orientation of tight oil and gas in China[J].Petroleum Exploration and Development,2019,46(6):1015-1026. [2] 郭建春,路千里,刘壮,等."多尺度高密度"压裂技术理念与关键技术——以川西地区致密砂岩气为例[J].天然气工业,2023,43(2): 67-76. GUO Jianchun,LU Qianli,LIU Zhuang,et al.Concept and key technology of "multi-scale high-density" fracturing technology:a case study of tight sandstone gas reservoirs in the western Sichuan Basin[J].Natural Gas Industry,2023,43(2):67-76. [3] 曾联波,赵向原.鄂尔多斯盆地天然裂缝与注水诱导裂缝[M].北京:科学出版社,2019. ZENG Lianbo,ZHAO Xiangyuan.Natural fractures and waterflooding induced fracture in the Ordos Basin[M].Beijing:Science Press,2019. [4] 赵向原,曾联波,靳宝光,等.低渗透油藏注水诱导裂缝特征及形成机理——以鄂尔多斯盆地安塞油田长6油藏为例[J].石油与天然气地质,2018,39(4):696-705. ZHAO Xiangyuan,ZENG Lianbo,JIN Baoguang,et al.Characteristics and formation mechanisms of waterflood induced fractures in low-permeability reservoirs:a case study from Chang 6 reservoir in Ansai oilfield,Ordos Basin[J].Oil & Gas Geology,2018,39(4):696-705. [5] 曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J].中国科学D辑:地球科学,2008,38(S1):41-47. ZENG Lianbo,GAO Chunyu,QI Jiafu,et al.Distribution and permeable of reservoir fractures,Longdong area of south Ordos Basin[J].Science in China:Series D,2008,38(S1):41-47. [6] 何建华,丁文龙,王哲,等.页岩储层体积压裂缝网形成的主控因素及评价方法[J].地质科技情报,2015,34(4):108-118. HE Jianhua,DING Wenlong,WANG Zhe,et al.Main controlling factors of fracture network formation of volume fracturing in shale reservoirs and its evaluation method[J].Geological Science and Technology Information,2015,34(4):108-118. [7] 曾联波,赵向原,朱圣举,等.低渗透油藏注水诱导裂缝及其开发意义[J].石油科学通报,2017,2(3):336-343. ZENG Lianbo,ZHAO Xiangyuan,ZHU Shengju,et al.Waterflood-induced fractures and its significance for development of low permeability sandstone oil reservoirs[J].Petroleum Science Bulletin,2017,2(3):336-343. [8] WANG Youjing,SONG Xinmin.Comprehensive characterization integrating static and dynamic data for dynamic fractures in ultra-low permeability reservoirs:a case study of the Chang 6 reservoir of the Triassic Yanchang Formation in the Ordos Basin,China[J].Minerals,2022,12(10):1277. [9] WANG Yang,CHENG Shiqing,ZHANG Kaidi,et al.A comprehensive work flow to characterize waterflood-induced fractures by integrating real-time monitoring,formation test,and dynamic production analysis applied to Changqing oil field,China[J].Society of Petroleum Engineers,2019,22(2):692-708. [10] 王友净,宋新民,田昌炳,等.动态裂缝是特低渗透油藏注水开发中出现的新的开发地质属性[J].石油勘探与开发,2015,42(2):222-228. WANG Youjing,SONG Xinmin,TIAN Changbing,et al.Dynamic fractures are an emerging new development geological attribute in water-flooding development of ultra-low permeability reservoirs[J].Petroleum Exploration and Development,2015,42(2):222-228. [11] 刘建军,吴明洋,宋睿,等.低渗透油藏储层多尺度裂缝的建模方法研究[J].西南石油大学学报(自然科学版),2017,39(4):90-103. LIU Jianjun,WU Mingyang,SONG Rui,et al.Study on simulation method of multi-scale fractures in low permeability reservoirs[J].Journal of Southwest Petroleum University (Science & Technology Edition),2017,39(4):90-103. [12] 彭凯,宁正福,王桂丽.页岩气藏双重介质渗流模型研究[J].重庆科技学院学报(自然科学版),2012,14(1):8-11. PENG Kai,NING Zhengfu,WANG Guili.Study for flow model in dual-porosity of shale gas reservoirs[J].Journal of Chongqing University of Science and Technology (Natural Sciences Edition),2012,14(1):8-11. [13] 董少群,曾联波,XU Chaoshui,等.储层裂缝随机建模方法研究进展[J].石油地球物理勘探,2018,53(3):625-641. DONG Shaoqun,ZENG Lianbo,XU Chaoshui,et al.Some progress in reservoir fracture stochastic modeling research[J].Oil Geophysical Prospecting,2018,53(3):625-641. [14] GUO Ye,LIANG Yu,LI Junchao,et al.A novel connectivity-based hierarchical model for multi-scale fracture system in carbonate reservoir simulation[J].Fuel,2019,250:327-338. [15] 高翔,冯建伟,渠继航,等.基于数字露头的多尺度裂缝模型建立及其对地下裂缝预测指导[J].地质科技通报,2024,43(2):143-155. GAO Xiang,FENG Jianwei,QU Jihang,et al.Establishment of multi-scale fracture model based on digital outcrop and its guidance for subsurface fracture prediction[J].Bulletin of Geological Science and Technology,2024,43(2):143-155. [16] FANG Junling,ZHOU Fengde,TANG Zhonghua.Discrete fracture network modelling in a naturally fractured carbonate reservoir in the Jingbei oilfield,China[J].Energies,2017,10(2):183. [17] 孙爽,赵淑霞,侯加根,等.致密砂岩储层多尺度裂缝分级建模方法——以红河油田92井区长8储层为例[J].石油科学通报,2019,4(1):11-26. SUN Shuang,ZHAO Shuxia,HOU Jiagen,et al.Hierarchical modeling of multi-scale fractures in tight sandstones:a case study of the eighth member of the Yanchang Formation in Wellblock 92 of the Honghe oilfield[J].Petroleum Science Bulletin,2019,4(1):11-26. [18] WANG Guochang,BHATTACHARYA S.Natural fracture mapping and discrete fracture network modeling of Wolfcamp Formation in hydraulic fracturing test site phase 1 area,Midland Basin:fractures from 3D seismic data,image log,and core[J].Marine and Petroleum Geology,2023,157:106474. [19] 史璨,林伯韬.页岩储层压裂裂缝扩展规律及影响因素研究探讨[J].石油科学通报,2021,6(1):92-113. SHI Can,LIN Botao.Principles and influencing factors for shale formations[J].Petroleum Science Bulletin,2021,6(1):92-113. [20] QIU Guozhou,CHANG Xin,LI Jing,et al.Study on the interaction between hydraulic fracture and natural fracture under high stress[J].Theoretical and Applied Fracture Mechanics,2024,130:104259. [21] 龙胜祥,张永庆,李菊红,等.页岩气藏综合地质建模技术[J].天然气工业,2019,39(3):47-55. LONG Shengxiang,ZHANG Yongqing,LI Juhong,et al.Comprehensive geological modeling technology for shale gas reservoirs[J].Natural Gas Industry,2019,39(3):47-55. [22] 商晓飞,龙胜祥,段太忠.页岩气藏裂缝表征与建模技术应用现状及发展趋势[J].天然气地球科学,2021,32(2):215-232. SHANG Xiaofei,LONG Shengxiang,DUAN Taizhong.Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J].Natural Gas Geoscience,2021,32(2):215-232. [23] 李渊,丁熊,王兴志,等.鄂尔多斯盆地延长组长8段浅水三角洲砂体结构特征[J].天然气地球科学,2021,32(1):57-72. LI Yuan,DING Xiong,WANG Xingzhi,et al.Structural characteristics of sand bodies in shallow-water deltas in the Chang 8 Member of Yanchang Formation,Ordos Basin[J].Natural Gas Geoscience,2021,32(1):57-72. [24] 康昱,陈刚,张卫刚,等.鄂尔多斯盆地姬塬油区铁边城区块长8储层成岩致密化及其与油气成藏关系[J].地质科技通报,2021,40(2):64-75. KANG Yu,CHEN Gang,ZHANG Weigang,et al.Diagenetic densification of Chang 8 sandstone reservoirs and its relationship with hydrocarbon accumulation in Tiebiancheng area,Jiyuan oilfield,Ordos Basin[J].Bulletin of Geological Science and Technology,2021,40(2):64-75. [25] 吕文雅,安小平,刘艳祥,等.致密砂岩储层注水诱导裂缝动态识别及演化特征——以鄂尔多斯盆地姬塬油田L井区长8油藏为例[J].石油与天然气地质,2024,45(5):1431-1446. Lü Wenya,AN Xiaoping,LIU Yanxiang,et al.Dynamic responses and evolutionary characteristics of waterflood-induced fractures in tight sandstone reservoirs:a case study of oil reservoirs in the 8th Member of the Yanchang Formation,well block L,Jiyuan oilfield,Ordos Basin[J].Oil & Gas Geology,2024,45(5):1431-1446. [26] 赵向原,曾联波,王晓东,等.鄂尔多斯盆地宁县—合水地区长6、长7、长8储层裂缝差异性及开发意义[J].地质科学,2015,50(1):274-285. ZHAO Xiangyuan,ZENG Lianbo,WANG Xiaodong,et al.Differences of natural fracture characteristics and their development significance in Chang 6,Chang 7 and Chang 8 reservoir,Ningxian-Heshui area,Ordos Basin[J].Chinese Journal of Geology,2015,50(1):274-285. [27] 罗贞耀.用侧向资料计算裂缝张开度的初步研究[J].地球物理测井,1990,14(2):83-92. LUO Zhenyao.Preliminary study on the calculation of fracture aperture using laterolog log[J].Geology Well Logging,1990,14(2):83-92. [28] 吕文雅,曾联波,陈双全,等.致密低渗透砂岩储层多尺度天然裂缝表征方法[J].地质论评,2021,67(2):543-556. Lü Wenya,ZENG Lianbo,CHEN Shuangquan,et al.Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs[J].Geological Review,2021,67(2):543-556. [29] LYU Wenya,ZENG Lianbo,LIU Zhongqun,et al.Fracture responses of conventional logs in tight-oil sandstones:a case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin,China[J].AAPG Bulletin,2016,100(9):1399-1417. [30] 唐小梅,曾联波,岳锋,等.鄂尔多斯盆地三叠系延长组页岩油储层裂缝特征及常规测井识别方法[J].石油天然气学报,2012,34(6):95-99. TANG Xiaomei,ZENG Lianbo,YUE Feng,et al.Fracture characterization and identification by conventional logs of shale reservoirs in Ordos Basin[J].Journal of Oil and Gas Technology,2012,34(6):95-99. [31] 刘艳祥,吕文雅,曾联波,等.鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J].地学前缘,2024,31(5):103-116. LIU Yanxiang,Lü Wenya,ZENG Lianbo,et al.Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield,Ordos Basin[J].Earth Science Frontiers,2024,31(5):103-116. [32] LI Hui,LIN Chengyan,REN Lihua,et al.Quantitative prediction of multi-period tectonic fractures based on integrated geological-geophysical and geomechanics data in deep carbonate reservoirs of Halahatang oilfield in northern Tarim Basin[J].Marine and Petroleum Geology,2021,134:105377. [33] 田建涛,赵超峰,张伟,等.水力压裂井中监测方法不对称压裂裂缝分析[J].石油物探,2019,58(4):563-571. TIAN Jiantao,ZHAO Chaofeng,ZHANG Wei,et al.Analysis of asymmetric hydraulic fracture for borehole microseismic monitoring[J].Geophysical Prospecting for Petroleum,2019,58(4):563-571. [34] 刘壮,郭建春,马辉运,等.提升高温气井酸压有效缝长方法——以川西地区栖霞组为例[J].天然气地球科学,2019,30(12):1694-1700. LIU Zhuang,GUO Jianchun,MA Huiyun,et al.Simulation study of the approach to enhance acid penetration distance in high temperature gas well: case study of Qixia Formation,western Sichuan Basin[J].Natural Gas Geoscience,2019,30(12):1694-1700. [35] 田佳,张勇,胡佳男.基于微地震监测的新民油田水力压裂缝网形态对比分析[J].重庆科技学院学报(自然科学版),2022,24(6):31-37. TIAN Jia,ZHANG Yong,HU Jia’nan.Comparison and analysis of hydraulic fracturing pattern in Xinmin oilfield based on microseismic monitoring[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2022,24(6):31-37. [36] 赵向原,曾联波,胡向阳,等.低渗透砂岩油藏注水诱导裂缝特征及其识别方法——以鄂尔多斯盆地安塞油田W区长6油藏为例[J].石油与天然气地质,2017,38(6):1187-1197. ZHAO Xiangyuan,ZENG Lianbo,HU Xiangyang,et al.Characteristics of waterflood induced fracture in low-permeability sandstone reservoirs and its identification methods:a case study from Chang 6 reservoir in W area in Ansai oilfied,Ordos Basin[J].Oil & Gas Geology,2017,38(6):1187-1197. [37] 赵向原,吕文雅,王策,等.低渗透砂岩油藏注水诱导裂缝发育的主控因素——以鄂尔多斯盆地安塞油田W区长6油藏为例[J].石油与天然气地质,2020,41(3):586-595. ZHAO Xiangyuan,Lü Wenya,WANG Ce,et al.Major factors controlling waterflooding-induced fracture development in low-permeability reservoirs—A case study of Chang 6 reservoir in W block in Ansai oilfield,Ordos Basin[J].Oil & Gas Geology,2020,41(3):586-595. |