Acta Petrolei Sinica ›› 2025, Vol. 46 ›› Issue (12): 2343-2357.DOI: 10.7623/syxb202512010
• OIL FIELD DEVELOPMENT • Previous Articles Next Articles
Zhang Hewei1,2, Shen Jian1,2, Wu Caifang1,2, Cai Ying3, Zhang Zheng1,2, Wang Qian1,2
Received:2024-11-18
Revised:2025-09-29
Online:2025-12-25
Published:2026-01-09
张和伟1,2, 申建1,2, 吴财芳1,2, 蔡颖3, 张政1,2, 王千1,2
通讯作者:
申建,男,1983年7月生,2011年获中国矿业大学地质资源与地质工程专业博士学位,现为中国矿业大学资源与地球科学学院院长、教授、博士生导师,主要从事煤和煤层气地质方面的研究工作。Email:jianshen@cumt.edu.cn
作者简介:张和伟,男,1994年2月生,2024年获中国矿业大学地质资源与地质工程专业博士学位,现为中国矿业大学资源与地球科学学院博士后,主要从事煤和煤层气地质方面的研究工作。Email:heweizhang@cumt.edu.cn
基金资助:CLC Number:
Zhang Hewei, Shen Jian, Wu Caifang, Cai Ying, Zhang Zheng, Wang Qian. Response of enhancing coalbed methane recovery by N2-CO2 mixed gas injection and optimization of injection ratio under the regulation of adsorption-diffusion heterogeneity for different coal lithotypes[J]. Acta Petrolei Sinica, 2025, 46(12): 2343-2357.
张和伟, 申建, 吴财芳, 蔡颖, 张政, 王千. 不同煤岩类型在吸附-扩散差异调控下N2-CO2混合气注入增强煤层气开采的响应与注入配比优化[J]. 石油学报, 2025, 46(12): 2343-2357.
Add to citation manager EndNote|Ris|BibTeX
| [1] 李树刚,白杨,林海飞,等. CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J].煤炭学报,2018,43(9):2476-2483. LI Shugang,BAI Yang,LIN Haifei,et al.Molecular simulation of adsorption thermodynamics of multicomponent gas in coal[J].Journal of China Coal Society,2018,43(9):2476-2483. [2] 罗明坤,李胜,荣海,等.CH4与N2,CO2间竞争吸附关系的核磁共振实验研究[J].煤炭学报,2018,43(2):490-497. LUO Mingkun,LI Sheng,RONG Hai,et al.Experimental study on competitive adsorption relationship between CH4 and N2,CO2 by NMR[J].Journal of China Coal Society,2018,43(2):490-497. [3] TORRIK A,REZAEE M,VALADI F M.Theoretical investigation of CO2/N2-enhanced coalbed methane recovery in coal-derived asphaltenes[J].Fuel,2025,395:134693. [4] 蔡颖,申建,李超,等.多重地质属性约束下CO2-ECBM选址原则及实例[J].煤炭学报,2020,45(12):4111-4120. CAI Ying,SHEN Jian,LI Chao,et al.Principles and examples of CO2-ECBM site selection under the constraints of multiple geological attributes[J].Journal of China Coal Society,2020,45(12):4111-4120. [5] 申建,秦勇,张春杰,等.沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J].煤炭学报,2016,41(1):156-161. SHEN Jian,QIN Yong,ZHANG Chunjie,et al.Feasibility of enhanced coalbed methane recovery by CO2 sequestration into deep coalbed of Qinshui Basin[J].Journal of China Coal Society,2016,41(1):156-161. [6] 张松航,张守仁,唐书恒,等.无烟煤中甲烷和二氧化碳混合气吸附运移规律[J].煤炭学报,2021,46(2):544-555. ZHANG Songhang,ZHANG Shouren,TANG Shuheng,et al.Adsorption and transport of methane and carbon dioxide mixture in anthracite[J]. Journal of China Coal Society,2021,46(2):544-555. [7] CHEN Liwei,WANG Lin,YANG Tianhong,et al.Deformation and swelling of coal induced from competitive adsorption of CH4/CO2/N2[J].Fuel,2021,286:119356. [8] ZHANG Lei,LI Jinghua,XUE Junhua,et al.Experimental studies on the changing characteristics of the gas flow capacity on bituminous coal in CO2-ECBM and N2-ECBM[J].Fuel,2021,291:120115. [9] 苏现波,黄津,王乾,等.CO2强化煤层气产出与其同步封存实验研究[J].煤田地质与勘探,2023,51(1):176-184. SU Xianbo,HUANG Jin,WANG Qian,et al.Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage[J].Coal Geology & Exploration,2023,51(1):176-184. [10] 张春杰,申建,秦勇,等.注CO2提高煤层气采收率及CO2封存技术[J].煤炭科学技术,2016,44(6):205-210. ZHANG Chunjie,SHEN Jian,QIN Yong,et al.Technology of CO2 injection affected to improve coalbed methane recovery and CO2 sealed storage[J].Coal Science and Technology,2016,44(6):205-210. [11] XU Chao,WANG Wenjing,WANG Kai,et al.Filling-adsorption mechanism and diffusive transport characteristics of N2/CO2 in coal:experiment and molecular simulation[J].Energy,2023,282:128428. [12] WANG Liguo,WANG Zhaofeng,LI Kaizhi,et al.Comparison of enhanced coalbed methane recovery by pure N2 and CO2 injection:experimental observations and numerical simulation[J].Journal of Natural Gas Science and Engineering,2015,23:363-372. [13] WANG Liguo,CHENG Yuanping,WANG Yongkang.Laboratory study of the displacement coalbed CH4 process and efficiency of CO2 and N2 injection[J].The Scientific World Journal,2014,2014(1):242947. [14] 刘旭东,桑树勋,周效志,等.基于煤储层三维非均质地质模型的CO2-ECBM数值模拟研究[J].煤炭学报,2023,48(7):2773-2790. LIU Xudong,SANG Shuxun,ZHOU Xiaozhi,et al.Numerical simulation of CO2-ECBM based on 3D heterogeneous geological model[J].Journal of China Coal Society, 2023,48(7):2773-2790. [15] ZHOU Fengde,HUSSAIN F,CINAR Y.Injecting pure N2 and CO2 to coal for enhanced coalbed methane:experimental observations and numerical simulation[J].International Journal of Coal Geology,2013,116-117:53-62. [16] FANG Huihuang,DU Gaofeng,GU Wenjie,et al.Displacement effect of CO2/N2-ECBM process with different water saturations based on THMC coupling[J].Energy & Fuels,2025,39(17):8086-8106. [17] 牛庆合,曹丽文,周效志.CO2注入对煤储层应力应变与渗透率影响的实验研究[J].煤田地质与勘探,2018,46(5):43-48. NIU Qinghe,CAO Liwen,ZHOU Xiaozhi.Experimental study of the influences of CO2 injection on stress-strain and permeability of coal reservoir[J].Coal Geology & Exploration,2018,46(5):43-48. [18] 刘峻麟,刘会虎,张琨,等.低渗煤层CO2-ECBM过程的CO2和CH4的扩散特征[J].煤炭科学技术,2023,51(S1):112-121. LIU Junlin,LIU Huihu,ZHANG Kun,et al.Diffusion characteristics of CO2 and CH4 in CO2-ECBM process of low permeability coal seam[J].Coal Science and Technology,2023,51(S1): 112-121. [19] WANG Zhenzhi,FU Xuehai,PAN Jienan,et al.Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal[J].Energy,2023,275:127377. [20] SHEN Shaicheng,FANG Zhiming,LI Xiaochun,et al.Enhanced coalbed methane recovery from lignite using CO2 and N2[J].Energy & Fuels,2025,39(22):10394-10409. [21] FAN Yongpeng,DENG Cunbao,ZHANG Xun,et al.Numerical study of CO2-enhanced coalbed methane recovery[J].International Journal of Greenhouse Gas Control,2018,76:12-23. [22] QU Jing,SHEN Jian,GUO Yunqing,et al.Variations of CH4 release pathways and processes in progressively pulverized coals:insights from multi-fractal analysis and experimental Validation[J].Fuel,2025,381:133471. [23] 郭云庆.不同宏观煤岩类型孔隙结构差异性及其对甲烷解吸特性控制——以峰峰矿区大社矿贫煤为例[D].徐州:中国矿业大学,2023. GUO Yunqing.Differences in pore structure of different lithotype of coal and their control over methane desorption characteristics—a case study of lean coal in Dashe coal mine of Fengfeng mining area[D].Xuzhou:China University of Mining and Technology,2023. [24] 张和伟.热氮气注入诱导煤组构解耦特征及其作用机理[D].徐州:中国矿业大学,2024. ZHANG Hewei.The decoupling characteristics and mechanism of composition and structure of coal by thermal nitrogen injection[D].Xuzhou:China University of Mining and Technology,2024. [25] 屈晶,申建,韩磊,等.基于CT图像的高阶煤不同宏观煤岩组分裂隙差异发育规律[J].天然气工业,2022,42(6):76-86. QU Jing,SHEN Jian,HAN Lei,et al.Characteristics of fractures in different macro-coal components in high-rank coal based on CT images[J].Natural Gas Industry,2022,42(6):76-86. [26] 邵奎宇.不同宏观煤岩类型气体吸附诱导变形差异性及其控制机制——以峰峰矿区大社矿贫煤为例[D].徐州:中国矿业大学,2023. SHAO Kuiyu.Differences in gas adsorption induced deformation of different lithotype of coal and their control mechanisms—a case study of lean coal in Dashe coal mine of Fengfeng mining area[D].Xuzhou:China University of Mining and Technology,2023. [27] 王帅峰,韩思杰,桑树勋,等.煤层亚临界/超临界CO2吸附特征与封存模式[J].天然气工业,2024,44(6):152-168. WANG Shuaifeng,HAN Sijie,SANG Shuxun,et al.Adsorption characteristics and storage models of subcritical/supercritical CO2 in coal seams[J].Natural Gas Industry,2024,44(6):152-168. [28] 中华人民共和国国家质量监督检验检疫总局.烟煤的宏观煤岩类型分类:GB/T 18023—2000[S].北京:中国标准出版社,2000. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China.Classification of macrolithotype for bituminous coal:GB/T 18023-2000[S].Beijing:Standards Press of China,2000. [29] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第1部分:压汞法:GB/T 21650.1—2008[S].北京:中国标准出版社,2008. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—part 1:mercury porosimetry:GB/T 21650.1-2008[S].Beijing:Standards Press of China,2008. [30] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第3部分:气体吸附法分析微孔:GB/T 21650.3—2011[S].北京:中国标准出版社,2012. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—part 3:analysis of micropores by gas adsorption:GB/T 21650.3-2011[S].Beijing:Standards Press of China,2012. [31] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.煤的高压等温吸附试验方法:GB/T 19560—2008[S].北京:中国标准出版社,2009. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Experimental method of high-pressure isothermal adsorption to coal:GB/T 19560-2008[S].Beijing:Standards Press of China,2009. [32] WANG Ziwei,LIU Shimin,QIN Yong.Coal wettability in coalbed methane production:a critical review[J].Fuel,2021,303:121277. [33] ZHANG Hewei,SHEN Jian,LI Kexin.The differences on gas-water relative permeability characteristics of low and high rank coal and its controlling factors[J].Petroleum Science and Technology,2024,42(25):5063-5081. [34] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.岩石中两相流体相对渗透率测定方法:GB/T 28912—2012[S].北京:中国标准出版社,2013. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Test method for two phase relative permeability in rock:GB/T 28912-2012[S].Beijing:Standards Press of China,2013. [35] FAN Chaojun,ELSWORTH D,LI Sheng,et al.Modelling and optimization of enhanced coalbed methane recovery using CO2/N2 mixtures[J].Fuel,2019,253:1114-1129. [36] ZHU Wancheng,WEI Chenhui,LIU J,et al.A model of coal-gas interaction under variable temperatures[J].International Journal of Coal Geology,2011,86(2/3):213-221. [37] National Institute of Standards and Technology (NIST).NIST Chemistry WebBook,NIST Standard Reference Database Number69[EB/OL].(2024)[2024-07-10].http://webbook.nist.gov/chemistry/ form-ser.html. [38] SONG Yu,QUAN Fangkai,YUAN Junhong.Diffusion of guest molecules in coal:insights from simulation[J].Fuel,2022,323:124295. [39] 张和伟,申建,李可心,等.不同煤组成与分布差异传热特征及其机理[J].煤炭学报,2023,48(6):2519-2529. ZHANG Hewei,SHEN Jian,LI Kexin,et al.Differential heat transfer characteristics and mechanism of different coal composition and distribution[J].Journal of China Coal Society,2023,48(6):2519-2529. [40] ZHAO Jincheng,QIN Yong,SHEN Jian,et al.Effects of pore structures of different maceral compositions on methane adsorption and diffusion in anthracite[J].Applied Sciences,2019,9(23):5130. [41] KIM H J,SHI Yao,HE Junwei,et al.Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions[J].Chemical Engineering Journal,2011,171(1):45-53. [42] ZHOU Yinbo,LI Zenghua,ZHANG Ruilin,et al.CO2 injection in coal:advantages and influences of temperature and pressure[J].Fuel,2019,236:493-500. [43] YAO Yanbin,LIU Dameng,CHE Yao,et al.Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J].Fuel,2010,89(7):1371-1380. [44] YAO Yanbin,LIU Dameng.Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J].Fuel,2012,95:152-158. [45] HAN Lei,SHEN Jian,QU Jing,et al.The analysis of the micro-occurrence state of irreducible water in anthracite fracture network based on digital core[J].AAPG Bulletin,2023,107(10):1781-1797. [46] 韩磊.无烟煤储层剩余流体赋存模式及其可动性[D].徐州:中国矿业大学,2023. HAN Lei.The occurrence mode and movability of residual fluid in anthracite[D].Xuzhou:China University of Mining and Technology,2023. [47] GUO Pinkun,CHENG Yuanping,JIN Kan,et al.Impact of effective stress and matrix deformation on the coal fracture permeability[J].Transport in Porous Media,2014,103(1):99-115. [48] WANG G X,WEI X R,WANG K,et al.Sorption-induced swelling/shrinkage and permeability of coal under stressed adsorption/desorption conditions[J].International Journal of Coal Geology,2010,83(1):46-54. [49] WANG Liang,WANG Bo,ZHU Jintuo,et al.Experimental study on alleviating water-blocking effect and promoting coal gas desorption by gas wettability alteration[J].Journal of Natural Gas Science and Engineering,2022,108:104805. [50] 李菁华,张磊,薛俊华,等.注气驱替中CO2置换煤体CH4行为特性[J].煤炭学报,2021,46(S1):385-395. LI Jinghua,ZHANG Lei,XUE Junhua,et al.Characteristic of binary gas displacement adsorption on coal in CO2-ECBM[J].Journal of China Coal Society,2021,46(S1):385-395. [51] 刘世奇,方辉煌,桑树勋,等.基于多物理场耦合求解的煤层CO2-ECBM数值模拟研究[J].煤炭科学技术,2019,47(9):51-59. LIU Shiqi,FANG Huihuang,SANG Shuxun,et al.Numerical simulation study on coal seam CO2-ECBM based on multi-physics fields coupling solution[J].Coal Science and Technology,2019,47(9):51-59. [52] HUANG Qiang,SHEN Jian,ZHANG Bing,et al.Real-time monitoring of coalbed methane production network following liquid CO2 injection in a low-efficiency well network:response to gas and water production characteristics[J].Energy,2023,285:129488. |
| [1] | Cao Bao, Mi Lidong, Xie Kun, Lu Xiangguo, Wen Guofeng, Tian Fuchun. Numerical simulation method for multiphase and multicomponent flow in ultra-low permeability and tight oil reservoirs based on discrete fracture model [J]. Acta Petrolei Sinica, 2025, 46(4): 763-778. |
| [2] | Yao Jun, Wang Tong, Sun Zhixue, Sun Hai, Huang ZhaoQin. Massively parallel numerical simulation technology for thermo-hydro-mechanical coupling using general embedded discrete fracture model [J]. Acta Petrolei Sinica, 2025, 46(3): 574-587. |
| [3] | Yan Xia, Xiong Xianyue, Wang Feng, Ma Ruishuai, Yuan Pu, Ji Liang, Sun Junyi, Zhang Jiyuan, Yang Hongtao, Li Chunhu, Zhang Tong, Yin Zesong. Mechanism and practical significance of velocity sensitivity effects in propped fractures of deep coal seams [J]. Acta Petrolei Sinica, 2025, 46(12): 2374-2388. |
| [4] | Wei Bing, Yang Mengke, Zhao Jinzhou, Kadet Valeriy, Pu Wanfen. Steady-state flow regimes and numerical simulation method of supercritical CO2 foam in porous media [J]. Acta Petrolei Sinica, 2024, 45(7): 1122-1129. |
| [5] | Ji Bingyu, Zhang Wenbiao, He Yingfu, Duan Taizhong, Liu He. Connotation and development trends of integration between geological reservoir modeling and numerical reservoir simulation [J]. Acta Petrolei Sinica, 2024, 45(7): 1152-1162. |
| [6] | Li Zhen, Guo Qi, Bu Yahui, Hu Huifang. Establishment and prediction of sample pool of saturation field based on deep learning [J]. Acta Petrolei Sinica, 2024, 45(4): 698-707. |
| [7] | Zhang Hong, Wu Kai, Feng Qingshan, Sui Yongli, Liu Xiaoben, Yang Yue, Yang Die, Dai Lianshuang, Wang Dongying, Wang Chong. Relationship between fracture toughness and crack tip constraint of high-strength pipe girth welds [J]. Acta Petrolei Sinica, 2023, 44(2): 385-393. |
| [8] | Su Xianbo, Wang Qian, Yu Shiyao, Zhao Weizhong, Wang Xiaoming, Bi Caiqin, Chen Ming, Wang Yibing, Sun Changyan, Fu Haijiao, Zou Chenglong, Zhang Shuangbin, Huang Jin, Xie Xiangjun. Integrated development technology path for deep coal measure gas based on low-negative carbon emission reduction [J]. Acta Petrolei Sinica, 2023, 44(11): 1931-1948. |
| [9] | Wang Qiang, Zhao Jinzhou, Hu Yongquan, Zhao Chaoneng, Zhang Zhenxiang. Numerical simulation of static spontaneous imbibition at the core scale [J]. Acta Petrolei Sinica, 2022, 43(6): 860-870. |
| [10] | Wu Lin, Zhu Ming, Feng Xingqiang, Ji Dongsheng, Zhou Lei, Liu Shengxin, Zhang Linyan, Tan Yuanlong, Qian Zhuliang, Yang Zhen. Interpretation on tectonic stress and deformation of Sikeshu sag in Junggar Basin [J]. Acta Petrolei Sinica, 2022, 43(4): 494-506. |
| [11] | Xu Lin, Liu Shujie, Xu Mingbiao, Feng Huanzhi, Xing Xijin, Deng Jiajia. Self-adaptive repair behavior and mechanism of micro-defects of differential pressure activated sealant [J]. Acta Petrolei Sinica, 2021, 42(5): 686-694. |
| [12] | Zou Wei, Yu Yixin, Liu Jinshui, Jiang Yiming, Tang Xianjun, Chen Shi, Yu Lang. Main controlling factors of the central inversional structure belt and the development of Ningbo anticline in Xihu sag,East China Sea Basin [J]. Acta Petrolei Sinica, 2021, 42(2): 176-185. |
| [13] | Lu Hailong, Shang Shilong, Chen Xuejun, Qin Xuwen, Gu Lijuan, Qiu Haijun. Research progress and development direction of numerical simulator for natural gas hydrate development [J]. Acta Petrolei Sinica, 2021, 42(11): 1516-1530. |
| [14] | Zhu Xiaohua, Luo Yunxu, Liu Weiji, Gao Rui, Jia Yudan, Liu Chengjun. Electrical breakdown experiment and numerical simulation method of rock-breaking mechanism of plasma electric pulse drilling [J]. Acta Petrolei Sinica, 2020, 41(9): 1146-1162. |
| [15] | Shan Chang'an, Zhang Tingshan, Liang Xing, Hu Ranran, Zhao Weiwei. Nanopore structure characteristics of high-rank vitrinite- and inertinite-coal [J]. Acta Petrolei Sinica, 2020, 41(6): 723-736. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 100724
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn