石油学报 ›› 2013, Vol. 34 ›› Issue (3): 507-512.DOI: 10.7623/syxb201303012

• 地质勘探 • 上一篇    下一篇

南海沉积物天然气水合物饱和度与电阻率的关系

陈玉凤1,2, 李栋梁1, 梁德青1, 周雪冰1,2, 吴能友1   

  1. 1. 中国科学院广州能源研究所中国科学院可再生能源与天然气水合物重点实验室 广东广州 510640;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2012-10-05 修回日期:2013-01-12 出版日期:2013-05-25 发布日期:2013-04-09
  • 通讯作者: 梁德青,男,1970年9月生,1992年获西安交通大学学士学位,2001年获上海交通大学博士学位,现为中国科学院广州能源研究所博士生导师,主要从事水合物基础物性应用技术研究。Email:liangdq@ms.giec.ac.cn
  • 作者简介:陈玉凤,女,1985年3月生,2008年获郑州大学化学工程学院学士学位,现为中国科学院广州能源研究所博士研究生,主要从事水合物基础物性实验研究。Email:chenyf@ms.giec.ac.cn
  • 基金资助:

    国家重大基础研究发展计划 (973)项目(2009CB219504)和国家高科技研究发展计划(863)项目(2012AA061403-03)资助。

Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea

CHEN Yufeng1,2, LI Dongliang1, LIANG Deqing1, ZHOU Xuebing1,2, WU Nengyou1   

  1. 1. Key Laboratory of Renewable Energy & Gas Hydrate, Guangzhou Institute of Energy Conversion, CAS, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-10-05 Revised:2013-01-12 Online:2013-05-25 Published:2013-04-09

摘要:

在天然气水合物勘探中,阿尔奇公式是由电阻率测井数据估算沉积层含水合物饱和度的基本公式,是对含油(气)岩心进行实验总结出的规律。但是对于水合物填充于多孔介质孔隙的沉积物,其电阻率与沉积物的物性以及水合物在孔隙的微观分布状态有关,可能存在一定的非阿尔奇现象,因此采用电阻率估算饱和度需要进行一定的校正。采用交流电桥法测量了3.5 % 盐水饱和的南海沉积物以及水合物在水饱和的沉积物中形成过程中的电阻率数据。水合物形成过程中其电阻率随着含水合物饱和度的增大而增大,尤其在低水合物饱和度(Sh<22 % ),其电阻率随着水合物的生成异常增大,含水合物沉积物的电阻率由水饱和的1.667Ω·m增大到含水合物饱和度为45 % 的2.661Ω·m。对于含水合物的沉积物,其双对数坐标系的电阻率增大指数和含水饱和度并不是阿尔奇公式所描述的直线关系,其饱和度指数n不是定值1.938 6,而随水饱和度Sw的增加而增加。当54.8 % <Sw<78.6 % 时,n小于1.938 6;当Sw>78.6 % 时,n大于1.938 6。

关键词: 含水合物饱和度, 电阻率, 饱和度指数, 沉积物, 天然气水合物

Abstract:

The Archie’s formula is a fundamental equation to calculate gas hydrate saturation of sediments with downhole electric resistivity log data from gas hydrate wells. This formula is based on measurements of a large number of oil/gas-bearing cores. However, the electric resistivity of porous hydrate-bearing sediments depends on physical properties of sediments and the microscopic distribution of gas hydrate in pores, thus a certain non-Archie’s behavior in hydrate-bearing sediments may exist in these porous sediments. Therefore, an experimental calibration for the hydrate saturation calculated by electric resistivity in hydrate-bearing sediments should be conducted. So laboratory studies on properties of hydrate-bearing sediments as a function of methane saturation are very important. Herein , we conducted a series of laboratory experiments to measure electric properties of South China Sea sediments initially saturated with 3.5 % salinity water and variations in electric resistivity for these sediments as gas hydrate was formed. The results show that the sediment resistivity increases with the increase of hydrate saturation during the formation of gas hydrate, especially at a low gas hydrate saturation (Sh<22 % ), where the electric resistivity of sediments increases dramatically with the formation of gas hydrate, rising from 1.667Ω·m to 2.661Ω·m as the gas hydrate saturation increases from 0 % to 45 % . Besides, the dependence of the resistivity index versus hydrate saturation for gas hydrate-bearing sediments is inconsistent with the Archie’s law, therefore, the saturation exponent (n) is not a constant but a function of hydrate saturation, i.e. it increases with the increase of water saturation (Sw), thus, it is lower than 1.938 6 when water saturation ranges between 54.8 % and 78.6 % but higher than 1.938 6 when water saturation exceeds 78.6 % . The results are of important implication for quantitative laboratory and field calibration of geophysical measurements within gas hydrate-bearing intervals.

Key words: hydrate saturation, electrical resistivity, saturation exponent, sediment, gas hydrate

中图分类号: