石油学报 ›› 2021, Vol. 42 ›› Issue (11): 1516-1530.DOI: 10.7623/syxb202111011
卢海龙1, 尚世龙1,2, 陈雪君1,2, 秦绪文3, 古利娟1, 邱海峻3
收稿日期:
2020-10-05
修回日期:
2021-02-05
出版日期:
2021-11-25
发布日期:
2021-12-01
作者简介:
卢海龙,男,1964年10月生,1985年获北京大学学士学位,1998年获东京大学博士学位,现为北京大学地球与空间科学学院博雅讲席教授、博士生导师,主要从事天然气水合物相关研究工作。Email:hlu@pku.edu.cn
基金资助:
Lu Hailong1, Shang Shilong1,2, Chen Xuejun1,2, Qin Xuwen3, Gu Lijuan1, Qiu Haijun3
Received:
2020-10-05
Revised:
2021-02-05
Online:
2021-11-25
Published:
2021-12-01
摘要: 天然气水合物是极具前景的可接替能源,是当前能源领域研究的热点之一。2017年中国已将天然气水合物列为第173号矿种,并制定了长远规划研发开发技术。天然气水合物的开发是一个涉及温度场、渗流场、应力场及化学场等的多场耦合问题,数值模拟是研究该类问题的重要手段。在简要概述天然气水合物藏的分类、开发方法及全球已开展的天然气水合物试采情况的基础上,系统总结了当前使用的主要天然气水合物数值模拟器及其发展脉络,并对各模拟器的特点进行了讨论对比;尤其重点介绍了使用最广泛的研究型模拟器TOUGH+HYDRATE系列程序。最后讨论了水合物模拟中存在的问题及发展方向,认为水合物藏精细描述、基础模型及参数获取、储层应力特征以及模拟结果可视化等是未来发展的重要方向。
中图分类号:
卢海龙, 尚世龙, 陈雪君, 秦绪文, 古利娟, 邱海峻. 天然气水合物开发数值模拟器研究进展及发展趋势[J]. 石油学报, 2021, 42(11): 1516-1530.
Lu Hailong, Shang Shilong, Chen Xuejun, Qin Xuwen, Gu Lijuan, Qiu Haijun. Research progress and development direction of numerical simulator for natural gas hydrate development[J]. Acta Petrolei Sinica, 2021, 42(11): 1516-1530.
[1] SLOAN JR E D. Fundamental principles and applications of natural gas hydrates[J].Nature,2003,426(6964):353-359. [2] KOH C A.Towards a fundamental understanding of natural gas hydrates[J].Chemical Society Reviews,2002,31(3):157-167. [3] REAGAN M T,MORIDIS G J,ZHANG Keni.Sensitivity analysis of gas production from Class 2 and Class 3 hydrate deposits[R].OTC 19554,2019. [4] MORIDIS G J,SLOAN E D.Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J].Energy Conversion and Management,2007,48(6):1834-1849. [5] MORIDIS G J.Numerical studies of gas production from Class 2 and Class 3 hydrate accumulations at the mallik site,Mackenzie Delta,Canada[J].SPE Reservoir Evaluation & Engineering,2004,7(3):175-183. [6] KURIHARA M,OUCHI H,NARITA H,et al.Gas production from methane hydrate reservoirs[C]//Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011).Edinburgh,2011.[s.l.:s.n.] [7] DAIGLE H,BANGS N L,DUGAN B.Transient hydraulic fracturing and gas release in methane hydrate settings:a case study from southern Hydrate Ridge[J].Geochemistry,Geophysics,Geosystems,2011,12(12):Q12022. [8] 马公正,卢海龙,陆敬安,等.海底沉积物多边形断层及其对天然气水合物赋存的控制[J].中国地质,2020,47(1):1-13. MA Gongzheng,LU Hailong,LU Jing'an,et al.Polygonal fault in marine sediments and its impact on gas hydrate occurrence[J].Geology in China,2020,47(1):1-13. [9] MA Gongzheng,ZHAN Linsen,LU Hailong,et al.Structures in shallow marine sediments associated with gas and fluid migration[J].Journal of Marine Science and Engineering,2021,9(4):396. [10] 雷裕红,宋颖睿,张立宽,等.海洋天然气水合物成藏系统研究进展及发展方向[J].石油学报,2021,42(6):801-820. LEI Yuhong,SONG Yingrui,ZHANG Likuan,et al.Research progress and development direction of reservoir-forming system of marine gas hydrates[J].Acta Petrolei Sinica,2021,42(6):801-820. [11] SILVA J M D,DAWE R.Towards commercial gas production from hydrate deposits[J].Energies,2011,4(2):215-238. [12] KONDORI J,ZENDEHBOUDI S,HOSSAIN M E.A review on simulation of methane production from gas hydrate reservoirs:molecular dynamics prospective[J].Journal of Petroleum Science and Engineering,2017,159:754-772. [13] 张旭辉,鲁晓兵,李鹏.天然气水合物开采方法的研究综述[J].中国科学:物理学力学天文学,2019,49(3):034604. ZHANG Xuhui,LU Xiaobing,LI Peng.A comprehensive review in natural gas hydrate recovery methods[J].SCIENTIA SINICA Physica,Mechanica & Astronomica,2019,49(3):034604. [14] MORIDIS G J,REAGAN M T.Gas production from oceanic Class 2 hydrate accumulations[R].OTC 18866,2007. [15] MORIDIS G J,REAGAN M T.Strategies for gas production from oceanic Class 3 hydrate accumulations[R].OTC 18865,2007. [16] HUANG Xin,CAI Wenjiu,ZHAN Linsen,et al.Study on the reaction of methane hydrate with gaseous CO2 by Raman imaging microscopy[J].Chemical Engineering Science,2020,222:115720. [17] TAKAHASHI H,YONEZAWA T,FERCHO E.Operation overview of the 2002 mallik gas hydrate production research well program at the Mackenzie Delta in the Canadian arctic[R].OTC 15124,2003. [18] KURIHARA M,SATO A,FUNATSU K,et al.Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada[R]. SPE 132155,2010. [19] BOSWELL R,SCHODERBEK D,COLLETT T S,et al.The I nik Sikumi field experiment,Alaska North Slope:design,operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J].Energy & Fuels,2017,31(1):140-153. [20] KONNO Y,FUJII T,SATO A,et al.Key findings of the world's first offshore methane hydrate production test off the coast of Japan:toward future commercial production[J].Energy & Fuels,2017,31(3):2607-2616. [21] YAMAMOTO K,WANG X X,TAMAKI M,et al.The second offshore production of methane hydrate in the Nankai trough and gas production behavior from a heterogeneous methane hydrate reservoir[J].RSC Advances,2019,9(45):25987-26013. [22] LI Jinfa,YE Jianliang,QIN Xuwen,et al.The first offshore natural gas hydrate production test in South China Sea[J].China Geology,2018,1(1):5-16. [23] 祝有海,张永勤,方慧,等.中国陆域天然气水合物调查研究主要进展[J].中国地质调查,2020,7(4):1-9. ZHU Youhai,ZHANG Yongqin,FANG Hui,et al.Main progress of investigation and test production of natural gas hydrate in permafrost of China[J].Geological Survey of China,2020,7(4):1-9. [24] 叶建良,秦绪文,谢文卫,等.中国南海天然气水合物第二次试采主要进展[J].中国地质,2020,47(3):557-568. YE Jianliang,QIN Xuwen,XIE Wenwei,et al.Main progress of the second gas hydrate trial production in the South China Sea[J].Geology in China,2020,47(3):557-568. [25] CHONG Zhengrong,YANG S H B,BABU P,et al.Review of natural gas hydrates as an energy resource:prospects and challenges[J].Applied Energy,2016,162:1633-1652. [26] 吴能友,黄丽,胡高伟,等.海域天然气水合物开采的地质控制因素和科学挑战[J].海洋地质与第四纪地质,2017,37(5):1-11. WU Nengyou,HUANG Li,HU Gaowei,et al.Geological controlling factors and scientific challenges for offshore gas hydrate exploitation[J].Marine Geology & Quaternary Geology,2017,37(5):1-11. [27] TANG Liangguang,LI Xiaosen,FENG Ziping,et al.Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J].Energy & Fuels,2007,21(1):227-233. [28] LI Lijia,LI Xiaosen,WANG Yi,et al.Analyzing the applicability of in situ heating methods in the gas production from natural gas hydrate-bearing sediment with field scale numerical study[J].Energy Reports,2020,6:3291-3302. [29] DRENTH R J J,SWINKELS W J A M.A thermal reservoir simulation model for natural gas hydrate production[C]//Proceedings International Symposium on Methane Hydrates (ICGH 1998).Chiba,Japan,1998.[s.l.:s.n.] [30] POR G J,BOERRIGTER P,MAAS J G,et al.A fractured reservoir simulator capable of modeling block-block interaction[R].SPE 19807,1989. [31] REGTIEN J M M,POR G J A,VAN STIPHOUT M T,et al.Interactive reservoir simulation[R].SPE 29146,1995. [32] SWINKELS W J A M,DRENTH R J J.Thermal reservoir simulation model of production from naturally occurring gas hydrate accumulations[J].SPE Reservoir Evaluation & Engineering,2000,3(6):559-566. [33] MORIDIS G,APPS J,PRUESS K,et al.EOSHYDR:a TOUGH2 module for CH4-hydrate release and flow in the subsurface[R].California:Lawrence Berkeley National Laboratory,1998. [34] MORIDIS G J.Numerical studies of gas production from methane hydrates[J].SPE Journal,2003,8(4):359-370. [35] MORIDIS G J,KOWALSKY M B,PRUESS K.HydrateResSim users manual:a numerical simulator for modeling the behavior of hydrates in geologic media[R].California:Lawrence Berkeley National Laboratory,2005. [36] GAMWO I K,LIU Yong.Mathematical modeling and numerical simulation of methane production in a hydrate reservoir[J].Industrial & Engineering Chemistry Research,2010,49(11):5231-5245. [37] LIU Yongge,HOU Jian,ZHAO Haifeng,et al.Numerical simulation of simultaneous exploitation of geothermal energy and natural gas hydrates by water injection into a geothermal heat exchange well[J].Renewable and Sustainable Energy Reviews,2019,109:467-481. [38] LIU Yongge,HOU Jian,CHEN Zhangxin,et al.A novel natural gas hydrate recovery approach by delivering geothermal energy through dumpflooding[J].Energy Conversion and Management,2020,209:112623. [39] GARAPATI N.Reservoir simulation for production of methane from gas hydrate reservoirs using carbon dioxide/carbon dioxide+nitrogen by HydrateResSim[D].Morgantown:West Virginia University,2013. [40] SRIDHARA P,ANDERSON B J,GARAPATI N,et al.Novel technological approach to enhance methane recovery from Class 2 hydrate deposits by employing CO2 injection[J].Energy & Fuels,2018,32(3):2949-2961. [41] MORIDIS G,KOWALSKY M B,PRUESS K.TOUGH-Fx/HYDRATE v1.0 User's Manual:a code for the simulation of system behavior in hydrate-bearing geologic media[R].Berkeley,California:Lawrence Berkeley National Laboratory,2005. [42] MORIDIS G J,KOWALSKY M B,PRUESS K.Depressurization-induced gas production from Class 1 hydrate deposits[J].SPE Reservoir Evaluation & Engineering,2007,10(5):458-481. [43] MORIDIS G J,KOWALSKY M B,PRUESS K.TOUGH+Hydrate v1.0 user's manual:a code for the simulation of system behavior in hydrate-bearing geologic medias[R].Berkeley,California:Lawrence Berkeley National Laboratory,2008. [44] ZHANG Keni,MORIDIS G J,WU Yushu,et al.A domain decomposition approach for large-scale simulations of flow processes in hydrate-bearing geologic media[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).Vancouver,2008.[s.l.:s.n.] [45] MORIDIS G,KOWALSKY M B,PRUESS K.TOUGH+HYDRATE v1.2 User's manual:a code for the simulation of system behavior in hydratebearing geologic media[R].Berkeley,California:Lawrence Berkeley National Laboratory,2012. [46] MORIDIS G J.User's manual for the hydrate v1.5 option of TOUGH+ v1.5:a code for the simulation of system behavior in hydrate-bearing geologic media[R].Berkeley,California:Lawrence Berkeley National Laboratory,2014. [47] MYSHAKIN E,LIN J S,UCHIDA S,et al.Numerical studies of depressurization-induced gas production from an interbedded marine turbidite gas hydrate reservoir model[C]//Proceedings of the 9th International Conference on Gas Hydrates (ICGH 2017).Denver,2017.[s.l.:s.n.] [48] RUTQVIST J,MORIDIS G J.Numerical studies on the geomechanical stability of hydrate-bearing sediments[J].SPE Journal,2009,14(2):267-282. [49] RUTQVIST J,MORIDIS G J,GROVER T,et al.Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J].Journal of Petroleum Science and Engineering,2012,92-93:65-81. [50] LIN J S,UCHIDA S,MYSHAKIN E M,et al.Geomechanical analysis of initial stage of gas production from interbedded hydrate-bearing sediment[C]//Proceedings of the 9th International Conference on Gas Hydrates(ICGH 2017).Denver,2017.[s.l.:s.n.] [51] SUN Jiaxin,NING Fulong,LEI Hongwu,et al.Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area:a case study[J].Journal of Petroleum Science and Engineering,2018,170:345-367. [52] MORIDIS G J,QUEIRUGA A F,REAGAN M T.Simulation of gas production from multilayered hydrate-bearing media with fully coupled flow,thermal,chemical and geomechanical processes using TOUGH+millstone.Part 1:numerical modeling of hydrates[J].Transport in Porous Media,2019,128(2):405-430. [53] QUEIRUGA A F,MORIDIS G J,REAGAN M T.Simulation of gas production from multilayered hydrate-bearing media with fully coupled flow,thermal,chemical and geomechanical processes using TOUGH+millstone.Part 2:geomechanical formulation and numerical coupling[J].Transport in Porous Media,2019,128(1):221-241. [54] REAGAN M T,QUEIRUGA A F,MORIDIS G J.Simulation of gas production from multilayered hydrate-bearing media with fully coupled flow,thermal,chemical and geomechanical processes using TOUGH+millstone.Part 3:production simulation results[J].Transport in Porous Media,2019,129(1):179-202. [55] MORIDIS G J,REAGAN M T,QUEIRUGA A F,et al.System response to gas production from a heterogeneous hydrate accumulation at the UBGH2-6 site of the Ulleung Basin in the Korean East Sea[J].Journal of Petroleum Science and Engineering,2019,178:655-665. [56] TENG Yihua,ZHANG Dongxiao.Long-term viability of carbon sequestration in deep-sea sediments[J].Science Advances,2018,4(7):eaao6588. [57] MASUDA Y,NAGANAWA S,ANDO S,et al.Numerical calculation of gas-production performance from reservoirs containing natural gas hydrates[R].SPE 38291,1997. [58] MASUDA Y,KONNO Y,IWAMA H,et al.Improvement of near wellbore permeability by methanol stimulation in a methane hydrate production well[R].OTC 19433,2008. [59] KURIHARA M,FUNATSU K,OUCHI H,et al.Analysis of the JOGMEC/NRCan/aurora Mallik gas hydrate production test through numerical simulation[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).Vancouver,2008.[s.l.:s.n.] [60] KURIHARA M,FUNATSU K,OUCHI H,et al.Analysis of 2007/2008 JOGMEC/NRCan/aurora Mallik gas hydrate production test through numerical simulation[C]//Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011).Edinburgh,2011.[s.l.:s.n.] [61] KURIHARA M,SATO A,OUCHI H,et al.Prediction of gas productivity from eastern Nankai trough methane-hydrate reservoirs[J]. SPE Reservoir Evaluation & Engineering,2009,12(3):477-499. [62] KONNO Y,OYAMA H,NAGAO J,et al.Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the eastern Nankai trough,Japan[J].Energy & Fuels,2010,24(12):6353-6358. [63] KONNO Y,MASUDA Y,HARIGUCHI Y,et al.Key factors for depressurization-induced gas production from oceanic methane hydrates[J].Energy & Fuels,2010,24(3):1736-1744. [64] KONNO Y,UCHIUMI T,OYAMA H,et al.Dissociation behavior of methane hydrate in sandy porous media below the quadruple point[J].Energy & Fuels,2012,26(7):4310-4320. [65] PAWAR R J,ZYVOLOSKI G A,TENMA N,et al.Numerical simulation of laboratory experiments on methane hydrate dissociation[R].ISOPE-I-05-059,2005. [66] SAKAMOTO Y,KOMAI T,KAWAMURA T,et al.Laboratory-scale experiment of methane hydrate dissociation by hot-water injection and numerical analysis for permeability estimation in reservoir:part 1-numerical study for estimation of permeability in methane hydrate reservoir[J].International Journal of Offshore and Polar Engineering,2007,17(1):47-56. [67] SAKAMOTO Y,KOMAI T,KAWAMURA T,et al.Modification of permeability model and history matching of laboratory-scale experiment for dissociation process of methane hydrate:part 2-numerical study for estimation of permeability in methane hydrate reservoir[J].International Journal of Offshore and Polar Engineering,2007,17(1):57-66. [68] SAKAMOTO Y,KAKUMOTO M,MIYAZAKI K,et al.Numerical study on dissociation of methane hydrate and gas production behavior in laboratory-scale experiments for depressurization:part 3-numerical study on estimation of permeability in methane hydrate reservoir[J].International Journal of Offshore and Polar Engineering,2009,19(2):124-134. [69] KOMAI T,SAKAMOTO Y,KISHITA A,et al.Numerical simulation of gas hydrate bearing sediments for enhanced recovery using partial oxidation method[R].ISOPE-M-15-562,2015. [70] WHITE M D,OOSTROM M.STOMP subsurface transport over multiple phases:user's guide[R].Richland:Pacific Northwest National Laboratory,1997. [71] WHITE M D,OOSTROM M.STOMP subsurface transport over multiple phases version 2.0 theory guide[R].Richland:Pacific Northwest National Laboratory,2000. [72] WHITE M D,OOSTROM M.STOMP subsurface transport over multiple phases version 3.0 user's guide[R].Richland:Pacific Northwest National Laboratory,2003. [73] WHITE M D,OOSTROM M.STOMP subsurface transport over multiple phases version 4.0 user's guide[R].Richland:Pacific Northwest National Laboratory,2006. [74] WHITE M D,MCGRAIL B P.Numerical simulation of methane hydrate production from geologic formations via carbon dioxide injection[R].OTC 19458,2008. [75] WHITE M D,WURSTNER S K,MCGRAIL B P.Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection[J].Marine and Petroleum Geology,2011,28(2):546-560. [76] WHITE M D,KNEAFSEY T J,SEOL Y,et al.An international code comparison study on coupled thermal,hydrologic and geomechanical processes of natural gas hydrate-bearing sediments[J].Marine and Petroleum Geology,2020,120:104566. [77] SHAHBAZI A.Mathematical modeling of gas production from gas hydrate reservoirs[D].Calgary:University of Calgary,2010. [78] SHAHBAZI A,POOLADI-DARVISH M.Application of operator-splitting technique in numerical simulation of gas-hydrate reservoirs[J].SPE Journal,2013,18(6):1067-1079. [79] SHAHBAZI A,POOLADI-DARVISH M.Behavior of depressurization in type III hydrate reservoirs[J].SPE Journal,2014,19(2):191-205. [80] LEI Hongwu,XU Tianfu,JIN Guangrong.TOUGH2Biot-a simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems:application to CO2 geological storage and geothermal development[J].Computers & Geosciences,2015,77:8-19. [81] JIN Guangrong,LEI Hongwu,XU Tianfu,et al.Simulated geomechanical responses to marine methane hydrate recovery using horizontal wells in the Shenhu area,South China Sea[J].Marine and Petroleum Geology,2018,92:424-436. [82] ZHU Huixing,XU Tianfu,YUAN Yilong,et al.Numerical analysis of sand production during natural gas extraction from unconsolidated hydrate-bearing sediments[J].Journal of Natural Gas Science and Engineering,2020,76:103229. [83] UDDIN M,COOMBE D A,LAW D H S,et al.Numerical studies of gas-hydrates formation and decomposition in a geological reservoir[R].SPE 100460,2006. [84] GADDIPATI M.Code comparison of methane hydrate reservoir simulators using CMG STARS[D].Morgantown:West Virginia University,2008. [85] MYSHAKIN E M,GADDIPATI M,ROSE K,et al.Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 313 site,northern Gulf of Mexico[J].Marine and Petroleum Geology,2012,34(1):169-185. [86] MYSHAKIN E M,AJAYI T,ANDERSON B J,et al.Numerical simulations of depressurization-induced gas production from gas hydrates using 3-D heterogeneous models of L-Pad,Prudhoe Bay Unit,North Slope Alaska[J].Journal of Natural Gas Science and Engineering,2016,35:1336-1352. [87] AJAYI T,ANDERSON B J,SEOL Y,et al.Key aspects of numerical analysis of gas hydrate reservoir performance:Alaska North Slope Prudhoe Bay unit "L-Pad" hydrate accumulation[J].Journal of Natural Gas Science and Engineering,2018,51:37-43. [88] WU C Y,CHIU Y C,HUANG Y J,et al.Effects of geomechanical mechanisms on gas production behavior:a simulation study of a Class-3 hydrate deposit of four-way-closure ridge offshore southwestern Taiwan[J].Energy Procedia,2017,125:486-493. [89] NAZRIDOUST K,AHMADI G.Computational modeling of methane hydrate dissociation in a sandstone core[J].Chemical Engineering Science,2007,62(22):6155-6177. [90] MASUDA Y,FUJINAGA Y,NAGANAWA S,et al.Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores[C]//Proceedings of the Third International Gas Hydrate Conference (ICGH 1999).Salt Lake City,1999.[s.l.:s.n.] [91] JASSIM E,ABDI M A,MUZYCHKA Y.A new approach to investigate hydrate deposition in gas-dominated flowlines[J].Journal of Natural Gas Science and Engineering,2010,2(4):163-177. [92] SU Kehua,SUN Changyu,DANDEKAR A,et al.Experimental investigation of hydrate accumulation distribution in gas seeping system using a large scale three-dimensional simulation device[J].Chemical Engineering Science,2012,82:246-259. [93] 郝天翔.应用FLUENT数值模拟天然气水合物开采过程[D].长春:吉林大学,2015. HAO Tianxiang.Numerical simulation of exploiting gas hydrate processes based on FLUENT software[D].Changchun:Jilin University,2015. [94] 贺博.不同尺度下模拟天然气水合物的降压分解[D].太原:太原理工大学,2017. HE Bo.Modeling the dissociation of methane hydrate by depressurization in different-scale cores[D].Taiyuan:Taiyuan University of Technology,2017. [95] CORTES D D,MARTIN A I,YUN T S,et al.Thermal conductivity of hydrate-bearing sediments[J].Journal of Geophysical Research:Solid Earth,2009,114(B11):B11103. [96] DAI S,SANTAMARINA J C,WAITE W F,et al.Hydrate morphology:physical properties of sands with patchy hydrate saturation[J].Journal of Geophysical Research:Solid Earth,2012,117(B11):B11205. [97] JANICKI G,SCHLÜTER S,HENNIG T,et al.Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea[J].Energy Procedia,2017,125:467-476. [98] 孙翔.考虑水合物分解影响的沉积物力学行为数值模拟研究[D].大连:大连理工大学,2017. SUN Xiang.Numerical simulation of geo-mechanical behavior for hydrate bearing sediments considering the influence of hydrate dissociation[D].Dalian:Dalian University of Technology,2017. [99] ENGLEZOS P,KALOGERAKIS N,DHOLABHAI P D,et al.Kinetics of gas hydrate formation from mixtures of methane and ethane[J].Chemical Engineering Science,1987,42(11):2659-2666. [100] ENGLEZOS P,KALOGERAKIS N,DHOLABHAI P D,et al.Kinetics of formation of methane and ethane gas hydrates[J].Chemical Engineering Science,1987,42(11):2647-2658. [101] KIM H C,BISHNOI P R,HEIDEMANN R A,et al.Kinetics of methane hydrate decomposition[J].Chemical Engineering Science,1987,42(7):1645-1653. [102] BISHNOI P R,NATARAJAN V.Formation and decomposition of gas hydrates[J].Fluid Phase Equilibria,1996,117(1/2):168-177. [103] CLARKE M,BISHNOI P R.Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition[J].The Canadian Journal of Chemical Engineering,2001,79(1):143-147. [104] WILDER J W,MORIDIS G J,WILSON S J.An international effort to compare gas hydrate reservoir simulators[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).Vancouver,2008.[s.l.:s.n.] [105] ANDERSON B,HANCOCK S,WILSON S,et al.Formation pressure testing at the Mount Elbert Gas Hydrate Stratigraphic Test Well,Alaska North Slope:operational summary,history matching,and interpretations[J].Marine and Petroleum Geology,2011,28(2):478-492. [106] ANDERSON B J,KURIHARA M,WHITE M D,et al.Regional long-term production modeling from a single well test,Mount Elbert Gas Hydrate Stratigraphic Test Well,Alaska North Slope[J].Marine and Petroleum Geology,2011,28(2):493-501. [107] WHITE M,SEOL Y,KNEAFSEY T.New code comparison study of gas hydrate reservoir simulators[J].Fire in the Ice,2017,17(2):9-11. [108] Shang Shilong,Gu Lijuan,Zhan Linsen,et al.Application of horizontal well to gas production from a hydrate reservoir with free gas and high irreducible water[J].Journal of Natural Gas Science and Engineering,2021:104102. [109] MORIDIS G J,COLLETT T S,BOSWELL R,et al.Toward production from gas hydrates:current status,assessment of resources,and simulation -based evaluation of technology and potential[J].SPE Reservoir Evaluation & Engineering,2009,12(5):745-771. [110] MORIDIS G J J,COLLETT T S S,POOLADI-DARVISH M,et al.Challenges,uncertainties,and issues facing gas production from gas-hydrate deposits[J].SPE Reservoir Evaluation & Engineering,2011,14(1):76-112. [111] REAGAN M T,MORIDIS G J,JOHNSON J N,et al.Field-scale simulation of production from oceanic gas hydrate deposits[J].Transport in Porous Media,2015,108(1):151-169. [112] FENG Yongchang,CHEN Lin,SUZUKI A,et al.Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization[J].Energy,2019,166:1106-1119. [113] 阮徐可,李小森,杨明军,等.天然气水合物二次生成及渗透率变化对降压开采的影响[J].石油学报,2015,36(5):612-619. RUAN Xuke,LI Xiaosen,YANG Mingjun,et al.Influences of gas hydrate reformation and permeability changes on depressurization recovery[J].Acta Petrolei Sinica,2015,36(5):612-619. [114] JIN Guangrong,LEI Hongwu,XU Tianfu,et al.Seafloor subsidence induced by gas recovery from a hydrate-bearing sediment using multiple well system[J].Marine and Petroleum Geology,2019,107:438-450. [115] SUN Xiang,LUO Hao,LUO Tingting,et al.Numerical study of gas production from marine hydrate formations considering soil compression and hydrate dissociation due to depressurization[J].Marine and Petroleum Geology,2019,102:759-774. [116] YAN Chuanliang,REN Xu,CHENG Yuanfang,et al.Geomechanical issues in the exploitation of natural gas hydrate[J].Gondwana Research,2020,81:403-422. [117] XIA Zhizeng,HOU Jian,LIU Yongge,et al.Production characteristic investigation of the Class Ⅰ,Class Ⅱ and Class Ⅲ hydrate reservoirs developed by the depressurization and thermal stimulation combined method[J].Journal of Petroleum Science and Engineering,2017,157:56-67. [118] CHEN Lin,SASAKI H,WATANABE T,et al.Production strategy for oceanic methane hydrate extraction and power generation with Carbon Capture and Storage (CCS)[J].Energy,2017,126:256-272. [119] MORIDIS G J,REAGAN M T,BOYLE K L,et al.Evaluation of the gas production potential of some particularly challenging types of oceanic hydrate deposits[J].Transport in Porous Media,2011,90(1):269-299. [120] ZHANG Keni,MORIDIS G J,WU Nengyou,et al.Evaluation of alternative horizontal well designs for gas production from hydrate deposits in the Shenhu area,South China Sea[R].SPE 131151,2010. [121] WALSH M R,HANCOCK S H,WILSON S J,et al.Preliminary report on the commercial viability of gas production from natural gas hydrates[J]. Energy Economics,2009,31(5):815-823. [122] MASUDA Y,HARIGUCHI Y,KONNO Y,et al.Model calculation on economics of depressurization-induced gas production from oceanic methane hydrates[R].OTC 20787,2010. [123] DEEPAK M,KUMAR P,SINGH K,et al.Techno-economic forecasting of a hypothetical gas hydrate field in the offshore of India[J].Marine and Petroleum Geology,2019,108:741-746. [124] YU Tao,GUAN Guoqing,ABUDULA A.Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai trough of Japan[J].Applied Energy,2019,251:113338. [125] CHEN Lin,FENG Yongchang,OKAJIMA J,et al.Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu,South China Sea[J].Journal of Natural Gas Science and Engineering,2018,53:55-66. [126] QIN Xuwen,LIANG Qianyong,YE Jianliang,et al.The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J].Applied Energy,2020,278:115649. [127] SUN Youhong,MA Xiaolong,GUO Wei,et al.Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea[J].Journal of Petroleum Science and Engineering,2019,181:106196. [128] 宁伏龙,窦晓峰,孙嘉鑫,等.水合物开采储层出砂数值模拟研究进展[J].石油科学通报,2020,5(2):182-203. NING Fulong,DOU Xiaofeng,SUN Jiaxin,et al.Progress in numerical simulation of sand production from hydrate reservoirs[J].Petroleum Science Bulletin,2020,5(2):182-203. [129] 李占东,刘建辉,李中,等.天然气水合物降压开采出砂定量预测新模型[J].石油学报,2019,40(S2):160-167. LI Zhandong,LIU Jianhui,LI Zhong,et al.A new model for quantitative prediction of sand production during natural gas hydrate exploitation by depressurization recovery[J].Acta Petrolei Sinica,2019,40(S2):160-167. [130] 窦晓峰,宁伏龙,李彦龙,等.基于连续-离散介质耦合的水合物储层出砂数值模拟[J].石油学报,2020,41(5):629-642. DOU Xiaofeng,NING Fulong,LI Yanlong,et al.Continuum-discrete coupling method for numerical simulation of sand production from hydrate reservoirs:a lab-scale case study[J].Acta Petrolei Sinica,2020,41(5):629-642. [131] UCHIDA S,LIN J S,MYSHAKIN E M,et al.Numerical simulations of sand migration during gas production in hydrate-bearing sands interbedded with thin mud layers at site NGHP-02-16[J].Marine and Petroleum Geology,2019,108:639-647. [132] CHEN Chen,YANG Lin,JIA Rui,et al.Simulation study on the effect of fracturing technology on the production efficiency of natural gas hydrate[J].Energies,2017,10(8):1241. [133] FENG Yongchang,CHEN Lin,SUZUKI A,et al.Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J].Energy Conversion and Management,2019,184:194-204. [134] LI Bing,MA Xiaolong,ZHANG Guobiao,et al.Enhancement of gas production from natural gas hydrate reservoir by reservoir stimulation with the stratification split grouting foam mortar method[J].Journal of Natural Gas Science and Engineering,2020,81:103473. [135] 孙嘉鑫,张凌,宁伏龙,等.天然气水合物藏增产研究现状与展望[J].石油学报,2021,42(4):523-540. SUN Jiaxin,ZHANG Ling,NING Fulong,et al.Research status and prospects of increasing production from gas hydrate reservoirs[J].Acta Petrolei Sinica,2021,42(4):523-540. [136] REAGAN M T,MORIDIS G J.Dynamic response of oceanic hydrate deposits to ocean temperature change[J].Journal of Geophysical Research:Oceans,2008,113(C12):C12023. [137] STRANNE C,O'REGAN M,JAKOBSSON M.Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics[J].Geophysical Research Letters,2016,43(16):8703-8712. [138] STRANNE C,O'REGAN M,JAKOBSSON M.Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation[J].Geophysical Research Letters,2017,44(16):8510-8519. [139] BOSWELL R,COLLETT T S,MYSHAKIN E,et al.The increasingly complex challenge of gas hydrate reservoir simulation[C]//Proceeding of the 9th International Conference on Gas Hydrates (ICGH 2017).Denver,2017.[s.l.:s.n.] [140] WANG Lei,GU Lijuan,LU Hailong.Sediment permeability change on natural gas hydrate dissociation induced by depressurization[J].China Geology,2020,3(2):221-229. [141] RINALDI A P.Read me for a TOUGH2 postprocessing program in MATLAB[R].Berkeley:Lawrence Berkeley National Laboratory,2014. [142] LI You,NIEWIADOMSKI M,TRUJILLO E,et al.Tougher:a user-friendly graphical interface for TOUGHREACT[J].Computers & Geosciences,2011,37(6):775-782. [143] TRAN A P,DAFFLON B,HUBBARD S.iMatTOUGH:an open-source Matlab-based graphical user interface for pre- and post-processing of TOUGH2 and iTOUGH2 models[J].Computers & Geosciences,2016,89:132-143. |
[1] | 骆汀汀, 张宸毅, 杨维好, 孙翔, 宋永臣. 含天然气水合物饱和粉质沉积物三轴剪切试验[J]. 石油学报, 2024, 45(6): 1019-1030. |
[2] | 李祯, 郭奇, 卜亚辉, 胡慧芳. 基于深度学习的饱和度场样本库建立及预测[J]. 石油学报, 2024, 45(4): 698-707. |
[3] | 刘永革, 李果, 贾伟, 白雅洁, 侯健, Clarke M A, 徐鸿志, 赵二猛, 纪云开, 陈立涛, 郭天魁, 贺甲元, 张乐. 储层改造对Ⅰ类天然气水合物藏降压开发效果的影响规律[J]. 石油学报, 2024, 45(2): 412-426,460. |
[4] | 魏纳, 裴俊, 蔡萌, 李海涛, 赵金洲, 张烈辉, 薛瑾. 天然气水合物自生热解堵剂热量平衡模拟计算[J]. 石油学报, 2023, 44(4): 657-671. |
[5] | 赵二猛, 侯健, 刘永革, 白雅洁. 海水对流增强天然气水合物藏低频电场加热效率模拟[J]. 石油学报, 2023, 44(4): 672-683. |
[6] | 刘争, 孙宝江, 王志远, 陈龙桥, 王鄂川, 陈立涛, 王金堂. 海域天然气水合物降压开采压力控制及气液流动特性[J]. 石油学报, 2022, 43(8): 1173-1184. |
[7] | 王强, 赵金洲, 胡永全, 赵超能, 张祯祥. 岩心尺度静态自发渗吸的数值模拟[J]. 石油学报, 2022, 43(6): 860-870. |
[8] | 吴林, 朱明, 冯兴强, 冀冬生, 周磊, 刘圣鑫, 张林炎, 谭元隆, 钱竹良, 杨珍. 准噶尔盆地四棵树凹陷构造应力场与构造变形解析[J]. 石油学报, 2022, 43(4): 494-506. |
[9] | 张智, 赵苑瑾, 张喆, 蔡楠, 刘和兴, 马传华, 梁继文. 深水井开采制度对天然气水合物分解的影响[J]. 石油学报, 2022, 43(2): 281-292. |
[10] | 周世琛, 周博, 薛世峰, 公彬. 基于离散元法的天然气水合物沉积物剪切带演化机理[J]. 石油学报, 2022, 43(1): 101-111. |
[11] | 雷裕红, 宋颖睿, 张立宽, 苗来成, 程明, 刘乃贵. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6): 801-820. |
[12] | 徐立涛, 何玉林, 石万忠, 梁金强, 王任, 杜浩, 张伟, 李冠华. 琼东南盆地深水区天然气水合物成藏主控因素及模式[J]. 石油学报, 2021, 42(5): 598-610. |
[13] | 许林, 刘书杰, 许明标, 冯桓榰, 邢希金, 邓佳佳. 压差激活密封剂的微缺陷自适应修复行为及机理[J]. 石油学报, 2021, 42(5): 686-694. |
[14] | 孙嘉鑫, 张凌, 宁伏龙, 刘天乐, 方彬, 李彦龙, 刘昌岭, 蒋国盛. 天然气水合物藏增产研究现状与展望[J]. 石油学报, 2021, 42(4): 523-540. |
[15] | 邹玮, 余一欣, 刘金水, 蒋一鸣, 唐贤君, 陈石, 余浪. 东海盆地西湖凹陷中央反转构造带发育主控因素及宁波背斜形成过程[J]. 石油学报, 2021, 42(2): 176-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1