石油学报 ›› 1990, Vol. 11 ›› Issue (2): 73-79.DOI: 10.7623/syxb199002008

• 油田开发 • 上一篇    下一篇

水压致裂室内模拟实验的声发射观测

刘建中1, 高龙生2, 张雪2   

  1. 1. 国家地震局地壳应力研究所;
    2. 国家地震局地球物理研究所
  • 收稿日期:1988-08-31 出版日期:1990-04-25 发布日期:2013-07-08

OBSERVATIONS ON THE ACOUSTIC EMISSION IN AN IN-HOUSE HYDROFRACTURING SIMULATION EXPERIMENT

Liu Jianzhong1, Gao Longsheng2, Zhang Xue2   

  1. 1. The Institute of Crustal Dynamics, State Seismological Bureau;
    2. The Institute of Geophysics, State Seismological Bureau
  • Received:1988-08-31 Online:1990-04-25 Published:2013-07-08

摘要: 本文介绍了水压致裂室内模拟实验的声发射观测结果,指出了水压致裂的裂缝扩展是一个不连续的过程;微观破裂源与宏观破裂的分布大体一致,都出现在最大水平主应力方向上;线破裂源法向上的声发射辐射强度较大;观测到的辐射信号通常以S波较强;完整岩石的压裂通常都有明显的声发射发生;但声发射强度与破裂压力的对应关系不明显.上述实验的结果可以做为野外实际观测的参考.

关键词: 声发射源, 水压致裂, 室内模拟实验, 破裂压力, 时间曲线, 最大水平主应力, 平均幅度, 辐射强度, 破裂面, 压裂压力

Abstract: This paper presents the observational results of the acoustic emission from an in-house hydrofracturing simulation experiment. It points out that propagation of the hydrofracturing crack is not continuous. Source of microfracturing and the distribution of macroc-cracks coincide generally, they all occur in the orientation of maximum horizontal principal stress. Amplitude of acoustic emission is bigger along a direction normal to the linear fracturing source. The amplitude of S wave is bigger in the observed signals. Obvious acoustic emission usually occurs at a fracturing of an integral rock, However, the amplitude of acoustic emission has not on obvious relation to fracturing pressure. These experimental results may be used as a reference to the actual field observations.