石油学报 ›› 2021, Vol. 42 ›› Issue (5): 641-653.DOI: 10.7623/syxb202105008

• 油田开发 • 上一篇    下一篇

粗糙孔壁对微/纳米尺度下致密砂岩气流动的影响

赵玉龙1, 刘香禺1, 张烈辉1, 吴婷婷2, 单保超3   

  1. 1. 西南石油大学油气藏地质及开发工程国家重点实验室 四川成都 610500;
    2. 中国石油西南油气田公司勘探开发研究院 四川成都 610093;
    3. 华中科技大学煤燃烧国家重点实验室 湖北武汉 430074
  • 收稿日期:2020-03-27 修回日期:2021-02-14 出版日期:2021-05-25 发布日期:2021-06-05
  • 通讯作者: 张烈辉,男,1967年5月生,1989年获西南石油学院学士学位,1995年获西南石油学院博士学位,现为西南石油大学副校长、教授、博士生导师,主要从事非常规油气藏开发、数值模拟、试井分析等方面的教学与科研工作。Email:zhangliehui@vip.163.com
  • 作者简介:赵玉龙,男,1986年12月生,2008年获西南石油大学学士学位,2015年获西南石油大学博士学位,现为西南石油大学研究员、博士生导师,主要从事非常规油气藏开发、数值模拟、试井分析等方面的教学与科研工作。Email:373104686@qq.com
  • 基金资助:
    国家自然科学基金项目(No.51534006,No.51874251,No.52074235)资助。

Influence of rough pore wall on tight sandstone gas flow at micro/nano scale

Zhao Yulong1, Liu Xiangyu1, Zhang Liehui1, Wu Tingting2, Shan Baochao3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Sichuan Chengdu 610500, China;
    2. Exploration and Development Research Institute, PetroChina Southwest Oil and Gasfield Company, Sichuan Chengdu 610093, China;
    3. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Hubei Wuhan 430074, China
  • Received:2020-03-27 Revised:2021-02-14 Online:2021-05-25 Published:2021-06-05

摘要: 致密砂岩气藏具有明显的低孔低渗特征,基于常规低渗透气藏开发理论的实验手段和数值模拟方法无法准确揭示致密砂岩气藏的微观流动规律。同时,以往研究多针对简单平直通道或随机生成多孔介质开展流动模拟,而关于粗糙孔壁对致密砂岩气流动的影响研究较少。为此,考虑滑脱效应、边界克努森层以及非理想气体稠密性影响,基于LBGK-D2Q9模型构建了致密砂岩气藏微/纳米尺度流动数学模型,引入正则化算子消除格子Boltzmann方法在模拟微/纳米尺度复杂多孔介质流动中的非正常物理现象,提出了适用于模型的组合反弹/反射滑移边界条件关键参数,通过与文献中多种数值模拟方法的计算结果对比验证了模型的正确性。在此基础上,研究了孔道壁面分形维数、相对粗糙度、孔径、压力以及克努森数(Kn)对致密砂岩气流动影响规律,并通过大量模拟数据拟合得到孔道中致密砂岩气渗透率与Kn、壁面分形维数及相对粗糙度的数学关系式。研究结果表明:壁面分形维数和相对粗糙度越大,孔道中致密砂岩气平均流速越小,从而使得气体质量流量减小,渗透率显著下降;微尺度效应可促进致密砂岩气流动,且孔道壁面越粗糙其促进作用越弱;在给定粗糙孔道中,致密砂岩气流动特征主要受Kn控制,并且随Kn增大气体流动能力增加;孔道粗糙壁面对致密砂岩气流动能力的阻碍作用远大于微尺度效应的促进作用,并且Kn越大阻碍作用越明显,忽略粗糙孔壁对微/纳米尺度气体流动的阻碍作用会导致对气藏渗流能力的过高估计。

关键词: 格子Boltzmann方法, 致密砂岩气, 粗糙孔壁, 滑脱效应, 微尺度效应

Abstract: Tight sandstone gas reservoirs are characterized by obvious low porosity and low permeability. Experimental methods and numerical simulation methods based on the development theories of conventional low-permeability gas reservoir cannot accurately reveal the microscopic flow laws of tight sandstone gas reservoirs. Moreover, previous studies mostly focuses on the flow simulations of simple straight channels or randomly generated porous media, while there are few studies on the effect of rough pore walls on tight sandstone gas flow. For this reason, considering the effects of slippage effect, boundary Knudsen layer and non-ideal dense gas, this paper establishes a mathematical model of the micro-scale flow of tight sandstone gas reservoirs based on the LBGK-D2Q9 model, introduces regularization operators to eliminate the abnormal physical phenomena of the lattice Boltzmann method in simulating the micro-scale and complex porous media flows, proposes key parameters of the combined bounce-back/specular-reflection boundary condition suitable for the model, and verifies the correctness of the model by comparison with the calculation results of various numerical simulation methods in the literature. On this basis, this paper studies the influence laws of the fractal dimension, relative roughness, pore size, pressure and Knudsen number (Kn)of the pore wall on tight sand gas flow, and obtains the mathematical relationship between tight sand gas permeability and Kn, fractal dimension of pore wall as well as relative roughness in the channel by fitting plenty of simulated data. The research results show that the greater the fractal dimension and relative roughness of the pore wall, the smaller the average flow velocity of tight sandstone gas in the channel, which reduces the mass flow rate of gas and significantly reduces the permeability. The micro-scale effect can promote the flow of tight sandstone gas; the rougher the pore wall, the weaker the promotion effect. In a given rough channel, the flow characteristics of tight sandstone gas are mainly controlled by Kn, and the flow capacity of gas increases with the increase of Kn. The rough pore wall of the channel has much greater resistance to the flow capacity of tight sandstone gas than the promotion of the micro-scale effect, and the greater the Kn, the more obvious the resistance. Ignoring the resistance of the rough pore wall to the micro-scale gas flow will lead to an overestimation of the gas reservoir's flow capacity.

Key words: lattice Boltzmann method, tight sandstone gas, rough pore wall, slippage effect, microscale effect

中图分类号: