[1] Murvay P,Silea I.A survey on gas leak detection and localization techniques[J].Journal of Loss Prevention in the Process Industries,2012,25(6):966-973.
[2] 耿艳峰,张朝晖.气体长输管线泄漏检测技术[J].仪器仪表学报,2001,22(增刊2):328-330.
Geng Yanfeng,Zhang Zhaohui.Leak detection technology for the long gas pipeline[J].Chinese Journal of Scientific Instrument,2001,22(Supplement 2):328-330.
[3] 杨杰,王桂增.输气管道泄漏诊断技术综述[J].化工自动化及仪表,2004,31(3):1-5.
Jie Yang,Wang Guizeng.Leak detection and location methods for gas transport pipelines[J].Control and Instruments in Chemical Industry,2004,31(3):1-5.
[4] 林伟国,郑志受.基于动态压力信号的管道泄漏检测技术研究[J].仪器仪表学报,2006,27(8):907-910.
Lin Weiguo,Zheng Zhishou.Research on pipeline leak detection based on dynamic pressure signal[J].Chinese Journal of Scientific Instrument,2006,27(8):907-910.
[5] 张宇,靳世久,何静菁,等.基于动态压力信号的管道泄漏特征提取方法研究[J].石油学报,2010,31(2):338-342.
Zhang Yu,Jin Shijiu,He Jingjing,et al.Extraction method for pipeline leakage feature based on dynamic pressure signal[J].Acta Petrolei Sinica,2010,31(2):338-342.
[6] 王立坤,赵晋云,付松广,等.基于神经网络的管道泄漏声波信号特征识别[J].仪器仪表学报,2006,27(增刊3):2247-2249.
Wang Likun,Zhao Jinyun,Fu Songguang,et al.Recognizing characteristics of pipeline leakage acoustic signals based on neural network[J].Chinese Journal of Scientific Instrument,2006,27(Supplement 3):2247-2249.
[7] 王明达,张来斌,梁伟,等.基于独立分量分析和支持向量机的管道泄漏识别方法[J].石油学报,2010,31(4):659-663.
Wang Mingda,Zhang Laibin,Liang Wei,et al.Pipeline leakage detection method based on independent component analysis and support vector machine[J].Acta Petrolei Sinica,2010,31(4):659-663.
[8] Qu Zhigang,Feng Hao,Zeng Zhoumo,et al.A SVM-based pipeline leakage detection and pre-warning system[J].Measurement,2010,43(4):513-519.
[9] Hadad K,Jabbari M,Tabadar Z,et al.PCA-based ANN approach to leak classification in the main pipes of VVER-1000[J].Kerntechnik,2012,77(5):365-370.
[10] Meng Lingya,Li Yuxing,Wang Wuchang,et al.Experimental study on leak detection and location for gas pipeline based on acoustic method[J].Journal of Loss Prevention in the Process Industries,2012,25(1):90-102.
[11] Daubechies I.Ten lectures on wavelets[M].Philadelphia:Society for Industrial and Applied Mathematics,1992.
[12] Deng Yongjun,Wang Wei,Qian Chengchun,et al.Boundary-processing-technique in EMD method and Hilbert transform[J].Chinese Science Bulletin,2001,46(11):954-961.
[13] 杜陈艳,张榆锋,杨平,等.经验模态分解边缘效应抑制方法综述[J].仪器仪表学报,2009,30(1):56-59.
Du Chenyan,Zhang Yufeng,Yang Ping,et al.Approaches for the end effect restraint of empirical mode decomposition algorithm[J].Chinese Journal of Scientific Instrument,2009,30(1):56-59.
[14] Qi Keyu,He Zhengjia,Zi Yanyang.Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis[J].Mechanical Systems and Signal Processing,2007,21(7):2750-2760.
[15] Jolliffe I T.Principal component analysis[M].New York:Springer Verlag,1989.
[16] Wang S W,Cui J T.Sensor-fault detection,diagnosis and estimation for centrifugal chiller systems using principal-component analysis method[J].Applied Energy,2005,82(3):197-213.
[17] Tax D M J,Duin R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20(11/13):1191-1199.
[18] Tax D M J,Duin R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
[19] Vapnik V N.The nature of statistical learning theory[M].New York:Springer Verlag,1995.
[20] Cho H W,Jeong M K,Kwon Y.Support vector data description for calibration monitoring of remotely located microrobotic system[J].Journal of Manufacturing Systems,2006,25(3):196-208. |