石油学报 ›› 2013, Vol. 34 ›› Issue (6): 1195-1199.DOI: 10.7623/syxb201306022

• 石油工程 • 上一篇    下一篇

基于时域统计特征的天然气管道泄漏检测方法

戚元华, 林伟国, 吴海燕   

  1. 北京化工大学信息科学与技术学院 北京 100029
  • 收稿日期:2013-05-16 修回日期:2013-09-06 出版日期:2013-11-25 发布日期:2013-10-13
  • 通讯作者: 林伟国,男,1968年2月生,1990年获中国矿业大学自动化专业学士学位,1999年获哈尔滨工业大学精密仪器与机械专业博士学位,现为北京化工大学信息科学与技术学院教授,主要从事生产过程智能检测与安全预警技术研究工作。Email:linwg@mail.buct.edu.cn
  • 作者简介:戚元华,男,1990年4月生,2012年获山东大学自动化专业学士学位,现为北京化工大学信息科学与技术学院硕士研究生,主要从事检测技术与自动化装置的研究工作。Email:qiyuanhua0168@163.com

A leak detection method for natural gas pipelines based on time-domain statistical features

QI Yuanhua, LIN Weiguo, WU Haiyan   

  1. College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2013-05-16 Revised:2013-09-06 Online:2013-11-25 Published:2013-10-13

摘要:

根据管道动态压力信号在时域的幅值统计特性,提出一种基于时域统计特征的信号提取方法,实现对天然气管道的泄漏检测。通过每帧信号归一化的频率分布直方图(k-P图),提取动态压力信号时域幅值在均值上、下特定范围内波动的概率特征,使得时域的特征提取与信号幅值及波形无关,并且不受信号频率成分偏移的影响,具有较好的工况适应性。以PCA降维后的正常工况下动态压力信号时域统计特征向量为目标类样本,建立PCA-SVDD诊断模型,实现了对管道泄漏的可靠检测。历史数据的离线检验以及连续、实时的现场检验结果表明该方法可实现天然气管道的泄漏检测。

关键词: 天然气管道, 泄漏检测, 概率带宽, 特征提取, PCA-SVDD诊断模型

Abstract:

In view of the amplitude-value statistical feature of pipeline dynamic pressure signals in time domain, an extraction method of these signals based on time-domain statistical features was proposed which can dynamically detect a gas leak of pipelines. Through the normalized frequency distribution histogram (k-P diagram) of each frame signal, the probability bandwidth feature of amplitude values distributed near the average can be extracted from dynamic pressure signals in time domain, which is independent of the amplitude value and waveform of signals, and also unaffected by the frequency offset of signals, so it has a good adaptability. Taking the statistical feature vector of dynamic pressure signals in normal working conditions whose dimension is reduced by PCA as a target sample, a PCA-SVDD diagnostic model was established that can offer reliable detection of a pipeline leak. The results of off-line detection of historical data and a continuous on-line test showed that this method can detect a leak of gas pipelines effectively.

Key words: natural gas pipeline, leak detection, probability bandwidth, feature extraction, PCA-SVDD diagnostic model

中图分类号: