石油学报 ›› 2019, Vol. 40 ›› Issue (11): 1376-1387.DOI: 10.7623/syxb201911008

• 油田开发 • 上一篇    下一篇

胶结型天然裂缝对水力裂缝影响的数值计算模型及机理

孙博, 周博   

  1. 中国石油大学(华东)储运与建筑工程学院 山东青岛 266580
  • 收稿日期:2019-01-06 修回日期:2019-06-22 出版日期:2019-11-25 发布日期:2019-12-07
  • 通讯作者: 孙博,男,1988年5月生,2011年获中国石油大学(华东)学士学位,现为中国石油大学(华东)储运与建筑工程学院博士研究生,主要从事油气田地下工程力学方面的研究。Email:sunnyboypdan@126.com
  • 作者简介:孙博,男,1988年5月生,2011年获中国石油大学(华东)学士学位,现为中国石油大学(华东)储运与建筑工程学院博士研究生,主要从事油气田地下工程力学方面的研究。Email:sunnyboypdan@126.com
  • 基金资助:

    国家科技重大专项(2016ZX05006-003)资助。

Numerical modeling and mechanism analysis of a cemented natural fracture on hydraulic fracture

Sun Bo, Zhou Bo   

  1. College of Pipeline and Civil Engineering, China University of Petroleum, Shandong Qingdao 266580, China
  • Received:2019-01-06 Revised:2019-06-22 Online:2019-11-25 Published:2019-12-07

摘要:

页岩等非常规储层中富含由矿物填充的胶结型天然裂缝,水力裂缝与胶结型天然裂缝间的相互作用机制是控制复杂裂缝网络形成的关键。基于流动-变形耦合的内聚力模型,采用断裂能参数对天然裂缝胶结强度进行简化表征,建立了水力裂缝与胶结型天然裂缝间相互作用的数值模型。通过与单条水力裂缝极限情况渐进解对比,验证了该方法的可行性。在此基础上,研究了地应力、逼近角、胶结强度比以及压裂液黏度和注入速率等因素对水力/天然裂缝相互作用的影响。研究结果表明:水平地应力差与最小水平地应力共同控制着水力裂缝的穿越行为;地应力差相同,最小水平地应力不同,水力裂缝最终几何形态及缝内压力分布可能不同;逼近角越小,水力裂缝越容易转向沿天然裂缝扩展;胶结强度比越大,水力裂缝越不容易转向沿天然裂缝扩展;忽略缝内流体滤失,相同的注入速率和流体黏度的乘积会导致相似的裂缝几何形状及注入点压力变化。裂缝尖端前缘区域形成低孔隙压力区与内聚力区大小有关:内聚力区越小,孔隙压力越低。

关键词: 胶结型天然裂缝, 水力裂缝, 相互作用, 内聚力模型, 流动-变形耦合

Abstract:

Mineral-filled cemented natural fractures are abundantly distributed in unconventional reservoirs such as shale. The interaction mechanism between hydraulic fractures and cemented natural fractures plays a key role in controlling the generation of complex fracture network. Using the cohesive zone model based on flow-deformation coupling, this study establishes the numerical model of the interaction between hydraulic fractures and cemented natural fractures. The cementing strength of natural fracture is simply characterized using the parameter of fracture energy. The feasibility of the proposed method has been verified by comparing with the asymptotic solutions of a single hydraulic fracture propagation model in limiting regimes. Furthermore, this study investigates the effects of in-situ stress, approaching angle, cementing strength ratio, fracturing fluid viscosity, injection rate and other factors on the interaction between hydraulic fracture and natural fracture. Research results show that both the horizontal in-situ stress difference and the minimum horizontal in-situ stress jointly control the crossing behavior of hydraulic fracture. Under the same horizontal in-situ stress difference, different minimum horizontal in-situ stresses may lead to a difference in the final geometries and pressure distribution inside the hydraulic fractures. The less the approaching angle is, the more easily the hydraulic fracture will deflect into the natural fracture. The larger the cementing strength ratio is, the more difficult the hydraulic fracture will turn into the natural fracture. The same product value of the injection rate and fluid viscosity would lead to similar fracture geometry and pressure profiles at the injection point if the internal fluid leak-off is ignored. In addition, the low pore pressure zone in front of the crack tip is relevant to the size of the cohesive zone:the smaller the cohesive zone is, the lower the pore pressure will be.

Key words: cemented natural fracture, hydraulic fracture, interaction, cohesive zone model, flow-deformation coupling

中图分类号: