石油学报 ›› 2020, Vol. 41 ›› Issue (11): 1366-1375.DOI: 10.7623/syxb202011006

• 地质勘探 • 上一篇    下一篇

基于分子模拟的纳米孔内甲烷吸附与扩散特征

任俊豪1,2, 任晓海3, 宋海强4, 韩登林1,2, 王晨晨5, 盛广龙6, 吕伟峰7   

  1. 1. 长江大学地球科学学院 湖北武汉 430100;
    2. 储层微观结构演化及数字表征实验室 湖北武汉 430100;
    3. 中国石油川庆钻探工程有限公司页岩气勘探开发项目经理部 四川成都 610051;
    4. 陕西延长石油国际勘探开发工程有限公司 陕西西安 710075;
    5. 非常规油气湖北省协同创新中心 湖北武汉 430100;
    6. 长江大学石油工程学院 湖北武汉 430100;
    7. 中国石油勘探开发研究院 北京 100083
  • 收稿日期:2019-12-24 修回日期:2020-07-28 出版日期:2020-11-25 发布日期:2020-12-11
  • 通讯作者: 韩登林,男,1979年11月生,2002年获长江大学学士学位,2009年获中国科学院地质与地球物理研究所博士学位,现为长江大学地球科学学院教授,主要从事储层地质学研究。Email:handl@yangtzeu.edu.cn
  • 作者简介:任俊豪,男,1994年8月生,2017年获长江大学地质学专业学士学位,现为长江大学矿物学、岩石学、矿床学专业硕士研究生,主要从事储层地质学研究。Email:674704679@qq.com
  • 基金资助:

    国家科技重大专项(2017ZX05008-003-050)资助。

Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation

Ren Junhao1,2, Ren Xiaohai3, Song Haiqiang4, Han Denglin1,2, Wang Chenchen5, Sheng Guanglong6, Lü Weifeng7   

  1. 1. College of Geosciences, Yangtze University, Hubei Wuhan 430100, China;
    2. Laboratory of Reservoir Microstructure Evolution and Digital Characterization, Hubei Wuhan 430100, China;
    3. Shale Gas Exploration and Development Project Management Department, CNPC Chuanqing Drilling Engineering Company Limited, Sichuan Chengdu 610051, China;
    4. Shaanxi Yanchang Petroleum International Exploration and Development Engineering Co., Ltd., Shaanxi Xi'an 710075, China;
    5. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Hubei Wuhan 430100, China;
    6. School of Petroleum Engineering, Yangtze University, Hubei Wuhan 430100, China;
    7. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
  • Received:2019-12-24 Revised:2020-07-28 Online:2020-11-25 Published:2020-12-11

摘要:

页岩气是目前非常规油气研究热点,加强甲烷渗流机理研究对页岩气藏开发具有重要意义。基于分子动力学模拟甲烷分子在纳米孔隙中的流动行为,构建了狭缝孔隙模型,并在此基础上分析孔径、压力、矿物种类和孔隙含水量对甲烷分子扩散能力的影响,讨论了天然气在微观多孔介质中的扩散规律。研究表明,甲烷分子在温度升高和孔径增大时扩散加快,而在压力增大时扩散变缓。孔隙壁面的矿物类型对甲烷分子的扩散有显著影响,在有机质、石英和高岭石中扩散系数依次减小。石墨烯构成的有机质孔隙对甲烷的吸附能力大于无机孔隙,主要是因为石墨烯特有的结构和光滑的表面对甲烷分子的扩散有促进作用。水分子对甲烷分子的扩散起抑制作用,甲烷的扩散系数随含水量的增加逐步下降,在有机孔隙中水分子以团簇的形式阻碍甲烷分子的扩散,而无机孔隙中水分子则以"水膜"的形式吸附在孔隙壁表面。当无机矿物孔隙内水含量过高(ρw≥50%)时,孔隙内的水分子会聚集形成"水桥",导致无机孔隙内甲烷的扩散系数低于有机孔隙。

关键词: 纳米孔, 甲烷, 扩散系数, 密度分布, 分子模拟

Abstract:

Shale gas is a hot spot of research in unconventional oil and gas. Strengthening the study of methane percolation mechanism is of great significance to the development of shale gas reservoirs. By simulating the flow behavior of methane molecules in nanopores based on molecular dynamics, this paper establishes a pore model of slits; on this basis, it further analyzes the influence of pore size, pressure, mineral species and pore water content on the diffusion capacity of methane molecules, and explores the diffusion law of gas in microscopic porous media. The study shows that the diffusion of methane molecules accelerates when the temperature and pore size increase, while becomes slower when the pressure increases. The types of minerals on the pore walls have a significant effect on the diffusion of methane molecules, and the diffusion coefficients in organic matter, quartz and kaolinite decrease sequentially. The organic pores in graphene have greater adsorption capacity for methane than inorganic pores. It is mainly because the unique structure and smooth surface of graphene promote the diffusion of methane molecules. Water molecules inhibit the diffusion of methane molecules. The diffusion coefficient of methane gradually decreases with the increasing of water content. The water molecules in organic pores hinder the diffusion of methane molecules in the form of clusters, while the water molecules in inorganic pores are adsorbed on the pore wall surface in the form of "water film". When the water content in the pores of inorganic minerals is too high (ρw≥50 % ), the water molecules in pores will gather to form "water bridge", resulting in the diffusion coefficient of methane in the inorganic pores being lower than that in the organic pores.

Key words: nanopore, methane, diffusion coefficient, density distribution, molecular simulation

中图分类号: