石油学报 ›› 2021, Vol. 42 ›› Issue (4): 508-522.DOI: 10.7623/syxb202104008

• 综述 • 上一篇    下一篇

人工智能在测井地层评价中的应用现状及前景

李宁1, 徐彬森1,2,3, 武宏亮1, 冯周1, 李雨生1, 王克文1, 刘鹏1   

  1. 1. 中国石油勘探开发研究院 北京 100083;
    2. 中国石油大学(北京)地球物理学院 北京 102249;
    3. 中国石油大学(北京)人工智能学院 北京 102249
  • 收稿日期:2020-02-07 修回日期:2021-01-20 出版日期:2021-04-25 发布日期:2021-05-11
  • 通讯作者: 徐彬森,男,1992年7月生,2015年获北京交通大学学士学位,现为中国石油大学(北京)博士研究生,主要从事云计算、机器学习、大数据、测井、人工智能等方面的研究。Email:xbs150@163.com
  • 作者简介:李宁,男,1958年7月生,1982年获华东石油学院学士学位,1989年获中国石油勘探开发研究院博士学位,现为中国石油勘探开发研究院教授级高级工程师、中国工程院院士、博士生导师,主要从事测井、软件等方面研究与教学工作。Email:ln@petrochina.com.cn
  • 基金资助:
    中国石油天然气集团公司科技项目(2018D-5010-16)和中国工程院战略咨询项目(2019-XZ-17)资助。

Application status and prospects of artificial intelligence in well logging and formation evaluation

Li Ning1, Xu Binsen1,2,3, Wu Hongliang1, Feng Zhou1, Li Yusheng1, Wang Kewen1, Liu Peng1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. College of Geophysics, China University of Petroleum, Beijing 102249, China;
    3. College of Artificial Intelligence, China University of Petroleum, Beijing 102249, China
  • Received:2020-02-07 Revised:2021-01-20 Online:2021-04-25 Published:2021-05-11

摘要: 测井是求取储层物性参数、发现与评价油气藏、预测油气储量的重要手段。测井技术更新换代、测井技术种类发展多样化、测井数据管理方式多元化等多重因素导致测井信息具有测量种类多、数据量大和多源异构等大数据特征。人工智能技术的快速发展为解决测井地层评价中的多解性、不确定性等难题提供了新的思路和方法,"测井+人工智能"也是一个亟待探索的新领域。在系统回顾人工智能在测井领域的研究现状和进展基础上,重点讨论了有监督机器学习和半监督机器学习、神经网络和深度学习等人工智能技术在测井曲线重构、岩相预测和物性参数计算等测井地层评价中的应用。受样本数量有限、处理流程不完善和自我调节能力较差等因素制约,人工智能在流体研究、储层综合评价等测井领域具有较大的发展空间和广阔的应用前景。

关键词: 机器学习, 深度学习, 人工智能, 测井曲线重构, 岩相分类, 物性参数预测

Abstract: Well logging is an important method for obtaining physical parameters of reservoirs, discovering and evaluating oil and gas reservoirs, and predicting oil-gas reserves. Multiple factors such as the upgrading of logging technology, development of diversified technology types, and diverse management methods of logging data have resulted in the logging information with big data characteristics such as multiple measurement types, large volume of data, and multi-source heterogeneity. The rapid development of artificial intelligence technology has provided new ideas and methods for solving the problems such as multiplicity of solutions, uncertainty in logging formation evaluation by well logging. The integration of well logging and artificial intelligence is also a new field that needs to be explored urgently. Based on systematically reviewing the research status and progress of artificial intelligence in the field of well logging, this paper focuses on the application of artificial intelligence technologies such as supervised machine learning and semi-supervised machine learning, neural network and deep learning in logging curve reconstruction, lithofacies prediction and the calculation of physical property parameters during the well logging and formation evaluation. Constrained by factors such as limited sample size, imperfect process flow, and poor self-regulation capabilities, artificial intelligence has a large development space and broad application prospects in the logging fields of fluid research and comprehensive reservoir evaluation.

Key words: machine learning, deep learning, artificial intelligence, logging curve reconstruction, lithofacies classification, prediction of physical property parameters

中图分类号: