石油学报 ›› 2021, Vol. 42 ›› Issue (6): 708-723.DOI: 10.7623/syxb202106002
赵承锦1, 蒋有录1, 刘景东1, 王良军2, 曾韬2
收稿日期:
2020-11-09
修回日期:
2021-05-08
出版日期:
2021-06-25
发布日期:
2021-07-06
通讯作者:
蒋有录,男,1959年10月生,1982年获华东石油学院石油地质专业学士学位,1999年获石油大学(北京)博士学位,现为中国石油大学(华东)地球科学与技术学院教授、博士生导师,主要从事油气藏形成与分布规律方面的研究。Email:jiangyl@upc.edu.cn
作者简介:
赵承锦,男,1991年8月生,2014年获山东科技大学学士学位,现为中国石油大学(华东)博士研究生,主要从事致密储层及油气成藏机理方面的研究。Email:zhaochengjint_t@163.com
基金资助:
Zhao Chengjin1, Jiang Youlu1, Liu Jingdong1, Wang Liangjun2, Zeng Tao2
Received:
2020-11-09
Revised:
2021-05-08
Online:
2021-06-25
Published:
2021-07-06
摘要: 孔隙度定量恢复是储层定量研究的核心问题之一,传统的半定量—定量恢复方法未考虑化学成岩作用与岩石表观体积变化,且应用条件苛刻、恢复结果精度低。在岩石组构、成岩演化序列分析和准确恢复原始孔隙度的基础上,综合考虑了岩石表观体积变化对孔隙演化的影响,以川东北地区须家河组储层为例,建立了压实主导型和胶结主导型成岩-孔隙度演化模式。基于粒间体积不变原理推导了压实主导型和胶结主导型储层的孔隙度变化量计算公式,并利用埋藏史-热史模拟结果获取古埋深、古地温等参数,建立单一成岩作用定量模型。综合原始孔隙度、成岩作用时间和温度范围,将地质历史时期孔隙演化视为多个单一增孔或减孔作用的叠加,构建了基于正演与反演结合的孔隙度定量恢复新方法(FIM法)。相较于改进的Scherer模型、机械-化学压实模型和反演回剥法,FIM法恢复孔隙度结果可信且适用范围更广。受早成岩阶段强烈的机械压实作用影响,川东北地区须家河组(长石)岩屑砂岩储层于晚侏罗世早期致密化,天然气藏具有"边致密边成藏"的特征;强烈的碳酸盐胶结使含石英砂屑灰岩储层于中侏罗世致密化,天然气藏具有"先致密后成藏"的特征。
中图分类号:
赵承锦, 蒋有录, 刘景东, 王良军, 曾韬. 基于正演与反演结合的孔隙度演化恢复方法 ——以川东北地区须家河组为例[J]. 石油学报, 2021, 42(6): 708-723.
Zhao Chengjin, Jiang Youlu, Liu Jingdong, Wang Liangjun, Zeng Tao. A recovery method of porosity evolution based on forward and inverse analyses: a case study of the tight sandstone of Xujiahe Formation, Northeast Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(6): 708-723.
[1] BLOCH S,SUCHECKI R K,MCGOWEN J H.Porosity prediction in sandstones:casual vs.causal relationships[J].AAPG Bulletin,1989,73:335-335. [2] EHRENBERG S N.Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones:Discussion; compaction and porosity evolution of Pliocene sandstones,Ventura basin,California:discussion[J].AAPG Bulletin,1989,73(10):1274-1276. [3] EHRENBERG S N,NADEAU P H,STEEN O.Petroleum reservoir porosity versus depth:influence of geological age[J].AAPG Bulletin,2009,93(10):1281-1296. [4] DUTTON S P,LAND L S.Cementation and burial history of a low-permeability quartzarenite,Lower Cretaceous Travis Peak Formation,east Texas[J].GSA Bulletin,1988,100(8):1271-1282. [5] ATHY L F.Density,porosity,and compaction of sedimentary rocks[J].AAPG Bulletin,1930,14(1):1-24. [6] EHRENBERG S N,NADEAU P H.Sandstone vs.Carbonate petroleum reservoirs:a global perspective on porosity-depth and porosity-permeability relationships[J].AAPG Bulletin, 2005,89(4):435-445. [7] SCHERER M.Parameters influencing porosity in sandstones:A model for sandstone porosity prediction[J].AAPG Bulletin,1987,71(5):485-491. [8] MAXWELL J C.Influence of depth,temperature,and geologic age on porosity of quartzose sandstone[J].AAPG Bulletin,1964,48(5):697-709. [9] PROSHLYAKOV B K.Reservoir properties of rocks as a function of their depth and lithology[J].Geologiya Nefti i Gaza,1960,12:24-29. [10] BJØRKUM P A,OELKERS E H,NADEAU P H,et al.Porosity prediction in quartzose sandstones as a function of time,temperature,depth,stylolite frequency,and hydrocarbon saturation[J].AAPG Bulletin,1998,82(4):637-648. [11] SCHMOKER J W,GAUTIER D L.Sandstone porosity as a function of thermal maturity[J].Geology,1988,16(11):1007-1010. [12] SELLEY R C.Porosity gradients in North Sea oil-bearing sandstones[J].Journal of the Geological Society,1978,135(2):119-132. [13] ATWATER G I,MILLER E E.The effect of decrease in porosity with depth on future development of oil and gas reserves in south Louisiana:ABSTRACT[J].AAPG Bulletin,1965,49(3):334. [14] 王彤,朱筱敏,张自力,等.莱州湾凹陷北洼沙河街组三段砂岩储层孔隙定量演化模式[J].石油学报,2020,41(6):671-690. WANG Tong,ZHU Xiaomin,ZHANG Zili,et al.Quantitative pore evolution model of sandstone reservoirs for Member 3 of Shahejie Formation in the northern subsag of Laizhouwan sag[J].Acta Petrolei Sinica,2020,41(6):671-690. [15] LUNDEGARD P D.Sandstone porosity loss; a "big picture" view of the importance of compaction[J].Journal of Sedimentary Research,1992,62(2):250-260. [16] 刘震,孙迪,李潍莲,等.沉积盆地地层孔隙动力学研究进展[J].石油学报,2016,37(10):1193-1215. LIU Zhen,SUN Di,LI Weilian,et al.Advances in research on stratigraphic porodynamics of sedimentary basins[J].Acta Petrolei Sinica,2016,37(10):1193-1215. [17] POWERS M C.Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration[J].AAPG Bulletin,1967,51(7):1240-1254. [18] TEODOROVICH G I,CHERNOV A A.Character of changes with depth in productive deposits of Apsheron oil-gas-bearing region[J].Soviet Geology,1968,4:83-93. [19] 夏鲁,刘震,李潍莲,等.砂岩压实三元解析减孔模型及其石油地质意义——以鄂尔多斯盆地十里加汗地区二叠系下石盒子组致密砂岩为例[J].石油勘探与开发,2018,45(2):275-286. XIA Lu,LIU Zhen,LI Weilian,et al.Ternary analytic porosity-reduction model of sandstone compaction trend and its significance in petroleum geology:A case study of tight sandstones in Permian Lower Shihezi Formation of Shilijiahan area,Ordos Basin,China[J].Petroleum Exploration and Development,2018,45(2):275-286. [20] CHUHAN F A,KJELDSTAD A,BJØRKUM K,et al.Experimental compression of loose sands:relevance to porosity reduction during burial in sedimentary basins[J].Canadian Geotechnical Journal,2003,40(5):995-1011. [21] BJØRLYKKE K,CHUHAN F,KJELDSTAD A,et al.Modelling of sediment compaction during burial in sedimentary basins[J].Elsevier Geo-Engineering Book Series,2004,2:699-708. [22] WAPLES D W.Evolution of sandstone porosity through time.The modified scherer model:a calculation method applicable to 1-D maturity modeling and perhaps to reservoir prediction[J].Natural Resources Research,2002,11(4):257-272. [23] WALDERHAUG O.Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J].AAPG Bulletin,1996,80(5):731-745. [24] WALDERHAUG O.Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn Field,Northern North Sea[J].AAPG Bulletin,2000,84(9):1325-1339. [25] 寿建峰,张惠良,沈扬,等.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报,2006,22(8):2165-2170. SHOU Jianfeng,ZHANG Huiliang,SHEN Yang,et al.Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J].Acta Petrologica Sinica,2006,22(8):2165-2170. [26] 张创,孙卫,高辉,等.基于铸体薄片资料的砂岩储层孔隙度演化定量计算方法——以鄂尔多斯盆地环江地区长8储层为例[J].沉积学报,2014,32(2):365-375. ZHANG Chuang,SUN Wei,GAO Hui,et al.Quantitative calculation of sandstone porosity evolution based on thin section data:a case study from chang8 reservoir of Huanjiang area,Ordos Basin[J].Acta Sedimentologica Sinica,2014,32(2):365-375. [27] 任纪舜,王作勋,陈炳蔚,等.中国及邻区大地构造图及说明书[M].北京:地质出版社,1999. REN Jishun,WANG Zuoxun,CHEN Bingwei,et al.Tectonic map and description of China and its adjacent areas[M].Beijing:The Geological Publishing House,1999. [28] 刘昭茜,罗开平,唐永,等.四川盆地元坝-通南巴地区关键构造期构造特征及陆相致密砂岩天然气成藏响应[J].地球科学,2019,44(3):756-772. LIU Zhaoqian,LUO Kaiping,TANG Yong,et al.Critical tectonic periods and the response of gas accumulation non-marine tight sandstone reservoir in Yuanba-Tongnanba area,Sichuan Basin[J].Earth Sciences,2019,44(3):756-772. [29] 刘景东,刘光祥,王良书,等.川东北元坝-通南巴地区二叠系-三叠系天然气地球化学特征及成因[J].石油学报,2014,35(3):417-428. LIU Jingdong,LIU Guangxiang,WANG Liangshu,et al.Geochemical characteristics and origin of Permian and Triassic natural gas in Yuanba-Tongnanba area,northeastern Sichuan Basin[J].Acta Petrolei Sinica,2014,35(3):417-428. [30] 段金宝,黄仁春,程胜辉,等.川东北元坝地区长兴期-飞仙关期碳酸盐岩台地沉积体系及演化[J].成都理工大学学报:自然科学版,2008,35(6):663-668. DUAN Jinbao,HUANG Renchun,CHENG Shenghui,et al.Depositional system and the evolution of carbonate rock platform of Changxing-Feixianguan period in Yuanba area of Northeast Sichuan,China[J].Journal of Chengdu University of Technology:Science & Technology Edition,2008,35(6):663-668. [31] 郑荣才,朱如凯,戴朝成,等.川东北类前陆盆地须家河组盆-山耦合过程的沉积-层序特征[J].地质学报,2008,82(8):1077-1087. ZHENG Rongcai,ZHU Rukai,DAI Chaocheng,et al.Depositional sequence features during coupling process between basin and mountain of the Xujiahe Formation of upper Triassic in the Foreland Basin,NE Sichuan[J].Acta Geologica Sinica,2008,82(8):1077-1087. [32] 李军,胡东风,邹华耀,等.四川盆地元坝-通南巴地区须家河组致密砂岩储层成岩-成藏耦合关系[J].天然气地球科学,2016,27(7):1164-1178. LI Jun,HU Dongfeng,ZOU Huayao,et al.Coupling relationship between reservoir diagenesis and gas accumulation in Xujiahe Formation of Yuanba-Tongnanba area,Sichuan Basin,China[J].Natural Gas Geoscience,2016,27(7):1164-1178. [33] 张莉,邹华耀,郝芳,等.川东北元坝地区须家河组储层特征与超致密成因探讨[J].地质学报,2017,91(9):2105-2118. ZHANG Li,ZOU Huayao,HAO Fang,et al.Characteristics and densification causes and of highly-tight sandstone of the Xujiahe Formation (T3x2) in the Yuanba area,northeastern Sichuan Basin[J].Acta Geologica Sinica,2017,91(9):2105-2118. [34] 盘昌林,刘树根,马永生,等.川东北须家河组储层特征及主控因素[J].西南石油大学学报:自然科学版,2011,33(3):27-34. PAN Changlin,LIU Shugen,MA Yongsheng,et al.Reservoir characteristics and main controlling factors of the Xujiahe Formation in northeastern Sichuan Basin[J].Journal of Southwest Petroleum University:Science & Technology Edition,2011,33(3):27-34. [35] 郭彤楼.四川盆地北部陆相大气田形成与高产主控因素[J].石油勘探与开发,2013,40(2):139-149. GUO Tonglou.Key controls on accumulation and high production of large non-marine gas fields in northern Sichuan Basin[J].Petroleum Exploration and Development,2013,40(2):139-149. [36] 李宏涛,史云清,肖开华,等.元坝气田须三段气藏层序沉积与储层特征[J].天然气工业,2016,36(9):20-34. LI Hongtao,SHI Yunqing,XIAO Kaihua,et al.Sequence,sedimentary and reservoir characteristics of Xu-3 gas reservoir in the Yuanba gasfield,NE Sichuan Basin[J].Natural Gas Industry,2016,36(9):20-34. [37] FOLK R L.Petrology of sedimentary rocks[M].Texas:Hemphill Publishing Company,Austin,1980:79. [38] 肖开华,李宏涛,贾爽.川东北元坝地区须三段钙屑砂岩储层特征及控气因素[J].石油与天然气地质,2014,35(5):654-660. XIAO Kaihua,LI Hongtao,JIA Shuang.Characteristics of calcarenaceous sandstone reservoirs and gas accumulation control factors of the 3rd Member of Xujiahe Formation in Yuanba area,northeast Sichuan Basin[J].Oil & Gas Geology,2014,35(5):654-660. [39] 杜红权,王威,周霞,等.川东北元坝地区须三段钙屑砂砾岩储层特征及控制因素[J].石油与天然气地质,2016,37(4):565-571. DU Hongquan,WANG Wei,ZHOU Xia,et al.Reservoir characteristics and main controlling factors of calcareous coarse clastic rocks of the third Member of Xujiahe Formation in Yuanba area,northeastern Sichuan Basin[J].Oil & Gas Geology,2016,37(4):565-571. [40] 许怀先.国家标准GB/T 30501-2014建立了致密砂岩气地质评价规范[J].石油勘探与开发,2016,43(3):416. XU Huaixian.The national standard GB/T 30501-2014 establishes the standard for geological evaluation of tight sandstone gas[J].Petroleum Exploration and Development,2016,43(3):416. [41] MESHRI I D.On the reactivity of carbonic and organic acids and generation of secondary porosity[J].SEPM Special Publication,1986,38:123-128. [42] BARTH T,ANDRESEN B,IDEN K,et al.Modelling source rock production potentials for short-chain organic acids and CO2-a multivariate approach[J].Organic Geochemistry,1996,25(8):427-438. [43] SAIGAL G C,MORAD S,BJORLYKKE K,et al.Diagenetic albitization of detrital K-feldspar in Jurassic,Lower Cretaceous,and Tertiary clastic reservoir rocks from offshore Norway; I,Textures and origin[J].Journal of Sedimentary Research,1988,58(6):1003-1013. [44] BEN BACCAR M,FRITZ B,MADE B.Diagenetic albitization of K-Feldspar and plagioclase in sandstone reservoirs; thermodynamic and kinetic modeling[J].Journal of Sedimentary Research,1993,63(6):1100-1109. [45] EHRENBERG S N.Measuring sandstone compaction from modal analyses of thin sections; how to do it and what the results mean[J].Journal of Sedimentary Research,1995,65(2a):369-379. [46] PAXTON S T,SZABO J O,AJDUKIEWICZ J M,et al.Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J].AAPG Bulletin,2002,86(12):2047-2067. [47] 庞小军,牛成民,杜晓峰,等.渤海海域石臼坨凸起东北缘沙河街组一段+二段砂砾岩储层差异定量表征[J].石油学报,2020,41(9):1073-1088. PANG Xiaojun,NIU Chengmin,DU Xiaofeng,et al.Q uantitative characterization of differences in glutenite reservoir in the Member 1 and 2 of Shahejie Formation in the northeastern margin of Shijiutuo uplift,Bohai Sea[J].Acta Petrolei Sinica,2020,41(9):1073-1088. [48] 王艳忠,操应长,葸克来,等.碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J].石油学报,2013,34(6):1100-1111. WANG Yanzhong,CAO Yingchang,XI Kelai,et al.A recovery method for porosity evolution of clastic reservoirs with geological time:a case study from the upper submember of Es4 in the Dongying depression,Jiyang subbasin[J].Acta Petrolei Sinica,2013,34(6):1100-1111. [49] HOUSEKNECHT D W.Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin,1987,71(6):633-542. [50] 张月,韩登林,杨铖晔,等.超深层碎屑岩储层裂缝充填流体迁移规律——以库车坳陷克深井区白垩系巴什基奇克组为例[J].石油学报,2020,41(3):292-300. ZHANG Yue,HAN Denglin,YANG Chengye,et al.Migration law of fracture filling fluid in ultra-deep clastic reservoirs:a case study of the Cretaceous Bashijiqike Formation in Keshen well block,Kuqa depression[J].Acta Petrolei Sinica,2020,41(3):292-300. [51] LUDWICK J C.A volumeter for measuring porosity of incoherent sands[J].Journal of Sedimentary Research,1956,26(3):276-283. [52] PRYOR W A.Reservoir Inhomogeneities of Some Recent Sand Bodies[J].Society of Petroleum Engineers Journal,1972,12(3):229-245. [53] WILSON J C,MCBRIDE E F.Compaction and porosity evolution of Pliocene sandstones,Ventura Basin,California[J].AAPG Bulletin,1988,72(6):664-681. [54] ATKINS J E,MCBRIDE E F.Porosity and packing of Holocene river,dune,and beach sands[J].AAPG Bulletin,1992,76(3):339-355. [55] 操应长,葸克来,王健,等.砂岩机械压实与物性演化成岩模拟实验初探[J].现代地质,2011,25(6):1152-1158. CAO Yingchang,XI Kelai,WANG Jian,et al.Preliminary discussion of simulation experiments on the mechanical compaction and physical property evolution of sandstones[J].Geoscience,2011,25(6):1152-1158. [56] XI Kelai,CAO Yingchang,WANG Yanzhong,et al.Factors influencing physical property evolution in sandstone mechanical compaction-The evidence from diagenetic simulation experiments[J].Petroleum Science,2015,12(3):391-405. [57] RITTENHOUSE G.Mechanical compaction of sands containing different percentages of ductile grains:A theoretical approach[J].AAPG Bulletin,1971,55(1):92-96. [58] BEARD D C,WEYL P K.Influence of texture on porosity and permeability of unconsolidated sand[J].AAPG Bulletin,1973,57(2):349-369. [59] 陈启林,黄成刚.沉积岩中溶蚀作用对储集层的改造研究进展[J].地球科学进展,2018,33(11):1112-1129. CHEN Qilin,HUANG Chenggang.Research progress of modification of reservoirs by dissolution in sedimentary rock[J].Advances in Earth Science,2018,33(11):1112-1129. [60] 彭军,王雪龙,韩浩东,等.塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J].石油勘探与开发,2018,45(3):415-425. PENG Jun,WANG Xuelong,HAN Haodong,et al.Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin,NW China[J].Petroleum Exploration and Development,2018,45(3):415-425. [61] 高志勇,冯佳睿,崔京钢,等.深层储集层长石溶蚀增孔的物理模拟与定量计算[J].石油勘探与开发,2017,44(3):359-369. GAO Zhiyong,FENG Jiarui,CUI Jinggang,et al.Physical simulation and quantitative calculation of increased feldspar dissolution pores in deep reservoirs[J].Petroleum Exploration and Development,2017,44(3):359-369. [62] 寿建峰,佘敏,沈安江.深层条件下碳酸盐岩溶蚀改造效应的模拟实验研究[J].矿物岩石地球化学通报,2016,35(5):860-867. SHOU Jianfeng,SHE Min,SHEN Anjiang.Experimental simulation of dissolution effect of carbonate rock under deep burial condition[J].Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(5):860-867. [63] CAROTHERS W W,KHARAKA Y K.Aliphatic acid anions in oil-field water-implications for origin of natural gas[J].AAPG Bulletin,1978,62(12):2441-2453. [64] SURDAM R C,CROSSEY L J,HAGEN E S,et al.Organic-inorganic interactions and sandstone diagenesis[J].AAPG Bulletin,1989,73(1):1-23. [65] 潘高峰,刘震,赵舒,等.砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例[J].石油学报,2011,32(2):249-256. PAN Gaofeng,LIU Zhen,ZHAO Shu,et al.Quantitative simulation of sandstone porosity evolution:a case from Yanchang Formation of the Zhenjing area,Ordos Basin[J].Acta Petrolei Sinica,2011,32(2):249-256. |
[1] | 熊亮, 隆轲, 曹勤明, 章顺利. 四川盆地川西气田多层系成藏条件及勘探开发关键技术[J]. 石油学报, 2024, 45(3): 595-614. |
[2] | 杨雨, 谢继容, 曹正林, 文龙, 王小娟, 肖尧, 杨建, 唐青松, 唐大海, 李明秋, 关旭, 曾青高, 陈伟华, 陈康, 肖红林. 四川盆地天府气田沙溪庙组大型致密砂岩气藏形成条件及勘探开发关键技术[J]. 石油学报, 2023, 44(6): 917-932. |
[3] | 余浩杰, 王振嘉, 李进步, 朱亚军. 鄂尔多斯盆地长庆气区复杂致密砂岩气藏开发关键技术进展及攻关方向[J]. 石油学报, 2023, 44(4): 698-712. |
[4] | 魏浩元, 朱宗良, 韦德强, 李昱东, 何恒, 杨银平, 李赫楠, 任雪瑶. 河西走廊及其邻区非常规油气成藏条件及勘探潜力[J]. 石油学报, 2023, 44(12): 2231-2249. |
[5] | 姜鹏飞, 吴建发, 朱逸青, 张德宽, 吴伟, 张芮, 吴喆, 王青, 杨雨然, 杨雪, 伍秋姿, 陈丽清, 何一凡, 张娟. 四川盆地海相页岩气富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1): 91-109. |
[6] | 刘致水, 王康宁, 包乾宗, 李之旭. 致密砂岩储层岩石物理横波速度预测方法 ——以鄂尔多斯盆地延长组为例[J]. 石油学报, 2022, 43(9): 1284-1294. |
[7] | 王清华, 张荣虎, 杨宪彰, 余朝丰, 徐振平, 周露, 王珂, 张亮. 库车坳陷东部迪北地区侏罗系阿合组致密砂岩气勘探重大突破及地质意义[J]. 石油学报, 2022, 43(8): 1049-1064. |
[8] | 王珂, 张荣虎, 唐永, 余朝丰, 杨钊, 唐雁刚, 周露. 库车坳陷北部构造带侏罗系阿合组构造成岩作用与储层预测[J]. 石油学报, 2022, 43(7): 925-940. |
[9] | 王福伟, 陈冬霞, 解广杰, 李士祥, 曾溅辉, 姚东升, 成铭. 鄂尔多斯盆地庆城地区延长组7段源-储结构控制下致密砂岩油的差异富集机制[J]. 石油学报, 2022, 43(7): 941-956,976. |
[10] | 曾联波, 吕文雅, 徐翔, 田鹤, 陆诗磊, 张洺菁. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2): 180-191. |
[11] | 黄兴, 窦亮彬, 左雄娣, 高辉, 李天太. 致密油藏裂缝动态渗吸排驱规律[J]. 石油学报, 2021, 42(7): 924-935. |
[12] | 赵玉龙, 刘香禺, 张烈辉, 吴婷婷, 单保超. 粗糙孔壁对微/纳米尺度下致密砂岩气流动的影响[J]. 石油学报, 2021, 42(5): 641-653. |
[13] | 胡勇, 李熙喆, 徐轩, 梅青燕, 陈颖莉, 王继平, 焦春艳, 郭长敏, 贾玉泽. 含水致密砂岩气藏可动用储量评价新方法及其应用[J]. 石油学报, 2021, 42(3): 332-340. |
[14] | 黄兴, 倪军, 李响, 薛俊杰, 柏明星, 周彤. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864. |
[15] | 曾联波, 刘国平, 朱如凯, 高志勇, 巩磊, 吕文雅. 库车前陆盆地深层致密砂岩储层构造成岩强度的定量评价方法[J]. 石油学报, 2020, 41(12): 1601-1609. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1