石油学报 ›› 2021, Vol. 42 ›› Issue (9): 1142-1162.DOI: 10.7623/syxb202109003
李婷婷1, 朱光有1, 赵坤1,2, 王鹏举1,2
收稿日期:
2020-06-08
修回日期:
2021-06-15
出版日期:
2021-09-25
发布日期:
2021-10-12
通讯作者:
李婷婷,女,1989年2月生,2012年获东北石油大学学士学位,2015年获中国石油勘探开发研究院硕士学位,现为中国石油勘探开发研究院工程师,主要从事石油地质研究工作。
作者简介:
李婷婷,女,1989年2月生,2012年获东北石油大学学士学位,2015年获中国石油勘探开发研究院硕士学位,现为中国石油勘探开发研究院工程师,主要从事石油地质研究工作。Email:lttjy@petrochina.com.cn
基金资助:
Li Tingting1, Zhu Guangyou1, Zhao Kun1,2, Wang Pengju1,2
Received:
2020-06-08
Revised:
2021-06-15
Online:
2021-09-25
Published:
2021-10-12
摘要: 随着油气勘探不断向深层—超深层领域拓展,古老层系的烃源岩越来越受到关注。华南地区南华系大塘坡组发育一套富有机质黑色岩系,其形成于两套冰期沉积之间,近年来引起勘探界关注。基于岩心、岩石薄片和X射线衍射、总有机碳含量和元素地球化学特征等分析测试资料,对大塘坡组黑色岩系沉积特征、形成环境与有机质富集机制进行了系统分析。大塘坡组黑色岩系主要分布于黔湘渝地区,厚度为2~90 m,自下而上划分为Ⅰ段含锰页岩、锰碳酸盐岩和Ⅱ段黑色页岩。Ⅰ段矿物组成以菱锰矿、铁锰白云石及黏土矿物为主,Ⅱ段主要矿物类型为黏土矿物、石英及长石。大塘坡组黑色岩系干酪根类型为腐泥型,发育红藻、绿藻、褐藻等藻类;Ⅰ段总有机碳(TOC)含量平均为2.3%,Ⅱ段底部TOC含量明显升高,平均为2.9%。综合分析认为,大塘坡组黑色岩系总体形成于冰期后气候转暖、盆地与开阔海连通的水体;热液活动及硅酸盐化学风化作用分别控制了Ⅰ段和Ⅱ段的营养物质来源,对表层水体的原始生产力具有重要影响,是大塘坡组黑色岩系有机质富集的关键;沉积期底水缺氧环境有利于有机质保存。
中图分类号:
李婷婷, 朱光有, 赵坤, 王鹏举. 华南地区南华系大塘坡组黑色岩系地质地球化学特征与有机质富集机制[J]. 石油学报, 2021, 42(9): 1142-1162.
Li Tingting, Zhu Guangyou, Zhao Kun, Wang Pengju. Geological,geochemical characteristics and organic matter enrichment of the black rock series in Datangpo Formation in Nanhua System,South China[J]. Acta Petrolei Sinica, 2021, 42(9): 1142-1162.
[1] 邹才能, 杜金虎, 徐春春, 等.四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3):278-293. ZOU Caineng, DU Jinhu, XU Chunchun, et al.Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3):278-293. [2] 魏国齐, 杜金虎, 徐春春, 等.四川盆地高石梯-磨溪地区震旦系-寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36(1):1-12. WEI Guoqi, DU Jinhu, XU Chunchun, et al.Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(1):1-12. [3] 杜金虎, 汪泽成, 邹才能, 等.上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1):1-16. DU Jinhu, WANG Zecheng, ZOU Caineng, et al.Discovery of intra-cratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1):1-16. [4] 杨跃明, 杨雨, 杨光, 等.安岳气田震旦系、寒武系气藏成藏条件及勘探开发关键技术[J]. 石油学报, 2019, 40(4):493-508. YANG Yueming, YANG Yu, YANG Guang, et al.Gas accumulation conditions and key exploration & development technologies of Sinian and Cambrian gas reservoirs in Anyue gas field[J]. Acta Petrolei Sinica, 2019, 40(4):493-508. [5] 杨海军, 陈永权, 田军, 等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2):62-72. YANG Haijun, CHEN Yongquan, TIAN Jun, et al.Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2):62-72. [6] 吴因业, 刘伟, 刘艳, 等.中国冈瓦纳的寒武系下伏沉积及其石油地质意义[J]. 石油学报, 2016, 37(9):1069-1079. WU Yinye, LIU Wei, LIU Yan, et al.The underlying deposition of Cambrian of Gondwana in China and its petroleum geological significance[J]. Acta Petrolei Sinica, 2016, 37(9):1069-1079. [7] LI Zhengxiang, EVANS D A D, HALVERSON G P.Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232. [8] 赵文智, 胡素云, 汪泽成, 等.中国元古界-寒武系油气地质条件与勘探地位[J]. 石油勘探与开发, 2018, 45(1):1-13. ZHAO Wenzhi, HU Suyun, WANG Zecheng, et al.Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1):1-13. [9] ZHU Guangyou, LI Tingting, ZHAO Kun, et al.Excellent source rocks discovered in the Cryogenian interglacial deposits in South China:geology, geochemistry, and hydrocarbon potential[J]. Precambrian Research, 2019, 333:105455. [10] 谢增业, 魏国齐, 张健, 等.四川盆地东南缘南华系大塘坡组烃源岩特征及其油气勘探意义[J]. 天然气工业, 2017, 37(6):1-11. XIE Zengye, WEI Guoqi, ZHANG Jian, et al.Characteristics of source rocks of the Datangpo Fm, Nanhua System, at the southeastern margin of Sichuan Basin and their significance to oil and gas exploration[J]. Natural Gas Industry, 2017, 37(6):1-11. [11] LI Chao, LOVE G D, LYONS T W, et al.Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China[J]. Earth and Planetary Science Letters, 2012, 331-332:246-256. [12] FENG Lianjun, CHU Xuelei, HUANG Jing, et al.Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China[J]. Gondwana Research, 2010, 18(4):632-637. [13] CHENG Meng, LI Chao, CHEN Xi, et al.Delayed Neoproterozoic oceanic oxygenation:evidence from Mo isotopes of the Cryogenian Datangpo Formation[J]. Precambrian Research, 2018, 319:187-197. [14] MA Zhixin, LIU Xiting, YU Wenchao, et al.Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin:insight from the basal Datangpo Formation of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 529:39-52. [15] PENG Xi, ZHU Xiangkun, SHI Fuqiang, et al.A deep marine organic carbon reservoir in the non-glacial Cryogenian ocean (Nanhua Basin, South China)revealed by organic carbon isotopes[J]. Precambrian Research, 2019, 321:212-220. [16] ZHANG Feifei, ZHU Xiangkun, YAN Bin, et al.Oxygenation of a Cryogenian ocean (Nanhua Basin, South China)revealed by pyrite Fe isotope compositions[J]. Earth and Planetary Science Letters, 2015, 429:11-19. [17] WANG Ping, ALGEO T J, ZHOU Qi, et al.Large accumulations of 34S-enriched pyrite in a low-sulfate marine basin:the Sturtian Nanhua Basin, South China[J]. Precambrian Research, 2019, 335:105504 [18] YE Yuntao, WANG Huajian, ZHAI Lina, et al.Contrasting Mo-U enrichments of the basal Datangpo Formation in South China:implications for the Cryogenian interglacial ocean redox[J]. Precambrian Research, 2018, 315:66-74. [19] 李献华, 王选策, 李武显, 等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J]. 地球化学, 2008, 37(4):382-398. LI Xianhua, WANG Xuance, LI Wuxian, et al.Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China:from orogenesis to intracontinental rifting[J]. Geochimica, 2008, 37(4):382-398. [20] 管树巍, 吴林, 任荣, 等.中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1):9-22. GUAN Shuwei, WU Lin, REN Rong, et al.Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1):9-22. [21] LI Zhengxiang, LI Xianhua, ZHOU Hanwen, et al.Grenvillian continental collision in South China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2):163-166. [22] YE Meifang, LI Xianhua, LI Wuxian, et al.SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze block[J]. Gondwana Research, 2007, 12(1/2):144-156. [23] WANG Jian, LI Zhengxiang.History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/4):141-158. [24] 王剑, 刘宝珺, 潘桂棠.华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏[J]. 矿物岩石, 2001, 21(3):135-145. WANG Jian, LIU Baojun, PAN Guitang.Neoproterozoic rifting history of South China significance to Rodinia breakup[J]. Journal of Mineralogy and Petrology, 2001, 21(3):135-145. [25] JIANG Ganqing, KENNEDY M J, CHRISTIE-BLICK N.Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature, 2003, 426(6968):822-826. [26] 高林志, 尹崇玉, 丁孝忠, 等.华南地区新元古代年代地层标定及地层对比[J]. 地球学报, 2015, 36(5):533-545. GAO Linzhi, YIN Chongyu, DING Xiaozhong, et al.Rating data of the Neoproterozoic chronostratigraphy and stratigraphic correlation in South China[J]. Acta Geoscientica Sinica, 2015, 36(5):533-545. [27] JIANG Ganqing, KAUFMAN A J, CHRISTIE-BLICK N, et al.Carbon isotope variability across the Ediacaran Yangtze platform in South China:implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2):303-320. [28] LIU Pengju, LI Xianhua, CHEN Shouming, et al.New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 2015, 60(10):958-963. [29] 宋芳, 牛志军, 刘浩, 等.鄂东南地区南华系沉积特征与接触关系:扬子陆块内部与东南缘盆地对比的良好借鉴[J]. 地层学杂志, 2016, 40(3):251-260. SONG Fang, NIU Zhijun, LIU Hao, et al.Stratigraphic sequence and contact relationship of the Nanhua System in south-eastern Hubei Province:a key to the stratigraphic correlation between the inner Yangtze region and the south-eastern basin[J]. Journal of Stratigraphy, 2016, 40(3):251-260. [30] 官开萍, 田力, 安志辉, 等.湖北神农架西部南华纪地层序列及其区域对比[J]. 地学前缘, 2016, 23(6):236-245. GUAN Kaiping, TIAN Li, AN Zhihui, et al.Stratigraphic succession of the Nanhua Period in the Shennongjia area in western Hubei and its regional correlation[J]. Earth Science Frontiers, 2016, 23(6):236-245. [31] LAN Zhongwu, LI Xianhua, ZHANG Qirui, et al.Global synchronous initiation of the 2nd episode of Sturtian glaciation:SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China[J]. Precambrian Research, 2015, 267:28-38. [32] CHU Xuelei, ZHANG Qirui, ZHANG Tonggang, et al.Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China[J]. Progress in Natural Science, 2003, 13(11):875-880. [33] SONG Gaoyuan, WANG Xinqiang, SHI Xiaoying, et al.New U-Pb age constraints on the Upper Banxi Group and synchrony of the Sturtian glaciation in South China[J]. Geoscience Frontiers, 2017, 8(5):1161-1173. [34] ZHANG Shihong, JIANG Ganqing, HAN Yigui.The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 2008, 20(4):289-294. [35] 马志鑫, 罗亮, 刘喜停, 等.重庆秀山小茶园锰矿南华系大塘坡组古环境[J]. 古地理学报, 2016, 18(3):473-486. MA Zhixin, LUO Liang, LIU Xiting, et al.Palaeoenvironment of the Datangpo Formation of Nanhua System in Xiaochayuan manganese deposit in Xiushan area of Chongqing[J]. Journal of Palaeogeography, 2016, 18(3):473-486. [36] YU Wenchao, ALGEO T J, DU Yuansheng, et al.Genesis of Cryogenian Datangpo manganese deposit:hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459:321-337. [37] YU Wenchao, ALGEO T J, DU Yuansheng, et al.Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China[J]. Precambrian Research, 2017, 293:112-130. [38] WEI Guangyi, WEI Wei, WANG Dan, et al.Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation[J]. Earth and Planetary Science Letters, 2020, 539:116244. [39] WU Chengquan, ZHANG Feifei, XIAO Jiafei, et al.Nanhuan manganese deposits within restricted basins of the southeastern Yangtze platform, China:constraints from geological and geochemical evidence[J]. Ore Geology Reviews, 2016, 75:76-99. [40] 齐靓, 余文超, 杜远生, 等.黔东南华纪铁丝坳期-大塘坡期古气候的演变:来自CIA的证据[J]. 地质科技情报, 2015, 34(6):47-57. QI Liang, YU Wenchao, DU Yuansheng, et al.Paleoclimate evolution of the Cryogenian Tiesi'ao Formation-Datangpo Formation in eastern Guizhou Province:evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 2015, 34(6):47-57. [41] BAO Xiujuan, ZHANG Shihong, JIANG Ganqing, et al.Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan)glaciation in South China[J]. Earth and Planetary Science Letters, 2018, 483:52-63. [42] LANG Xianguo, CHEN Jitao, CUI Huan, et al.Cyclic cold climate during the Nantuo glaciation:evidence from the Cryogenian Nantuo Formation in the Yangtze block, South China[J]. Precambrian Research, 2018, 310:243-255. [43] 谯文浪, 汪建国, 陈武.贵州丹寨地区南华系地层地球化学特征及其对古气候、古环境的意义[J]. 地质科学, 2013, 48(3):847-859. QIAO Wenlang, WANG Jianguo, CHEN Wu.Geochemistry of Nanhuan sedimentary rocks in Danzhai, southeast Guizhou and implications for changes of palaeoenvironment and palaeoclimate[J]. Chinese Journal of Geology, 2013, 48(3):847-859. [44] 张启锐.皖南-浙西南华系沉积构造环境研究[J]. 中国科学:地球科学, 2015, 45(2):127-138. ZHANG Qirui.The Nanhuan sedimentary and tectonic environments in southern Anhui Province-western Zhejiang Province[J]. Scientia Sinica (Terrae), 2015, 45(2):127-138. [45] VMACDONALD F A, SCHMITZ M D, CROWLEY J L, et al.Calibrating the Cryogenian[J]. Science, 2010, 327(5970):1241-1243. [46] HOFFMAN P F, ABBOT D S, ASHKENAZY Y, et al.Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11):e1600983. [47] CONDON D, ZHU Maoyan, BOWRING S, et al.U-Pb ages from the Neoproterozoic Doushantuo Formation, China[J]. Science, 2005, 308(5718):95-98. [48] ZHOU Chuanming, TUCKER R, XIAO Shuhai, et al.New constraints on the ages of Neoproterozoic glaciations in South China[J]. Geology, 2004, 32(5):437-440. [49] 尹崇玉, 王砚耕, 唐烽, 等.贵州松桃南华系大塘坡组凝灰岩锆石SHRIMP II U-Pb年龄[J]. 地质学报, 2006, 80(2):273-278. YIN Chongyu, WANG Yangeng, TANG Feng, et al.SHRIMP II U-Pb zircon date from the Nanhuan Datangpo Formation in Songtao county, Guizhou province[J]. Acta Geologica Sinica, 2006, 80(2):273-278. [50] 余文超, 杜远生, 周琦, 等.黔东松桃地区大塘坡组LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质论评, 2016, 62(3):539-549. YU Wenchao, DU Yuansheng, ZHOU Qi, et al.LA-ICP-MS zircon U-Pb dating from the Nanhuan Datangpo Formation in Songtao area, East Guizhou and its geological significance[J]. Geological Review, 2016, 62(3):539-549. [51] DOBRZINSKI N, BAHLBURG H.Sedimentology and environmental significance of the Cryogenian successions of the Yangtze platform, South China block[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2):100-122. [52] 周琦, 杜远生, 袁良军, 等.黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2):177-188. ZHOU Qi, DU Yuansheng, YUAN Liangjun, et al.The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua Period in Guizhou-Hunan-Chongqing border area, South China[J]. Earth Science, 2016, 41(2):177-188. [53] 杜远生, 周琦, 余文超, 等.Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用[J]. 地质科技情报, 2015, 34(6):1-7. DU Yuansheng, ZHOU Qi, YU Wenchao, et al.Linking the Cryogenian manganese metallogenic process in the southeast margin of Yangtze block to break-up of Rodinia supercontinent and Sturtian glaciation[J]. Geological Science and Technology Information, 2015, 34(6):1-7. [54] 汪正江, 王剑, 江新胜, 等.华南扬子地区新元古代地层划分对比研究新进展[J]. 地质论评, 2015, 61(1):1-22. WANG Zhengjiang, WANG Jian, JIANG Xinsheng, et al.New progress for the stratigraphic division and correlation of Neoproterozoic in Yangtze block, South China[J]. Geological Review, 2015, 61(1):1-22. [55] 凌云, 马志鑫, 杨弘忠, 等.重庆秀山南华纪大塘坡期沉积相分析与锰矿成矿[J]. 地质科技情报, 2016, 35(6):150-156. LING Yun, MA Zhixin, YANG Hongzhong, et al.Sedimentary facies analysis of Datangpo Formation and manganese mineralization at Xiushan, Chongqing[J]. Geological Science and Technology Information, 2016, 35(6):150-156. [56] JIANG Ganqing, WANG Ziqiang, ZHANG Linghua.Sequence stratigraphy of Upper Proterozoic glacigenous rocks in southeastern margin of Yangtze platform[J]. Journal of China University of Geosciences, 1996, 7(1):38-45. [57] BROCKS J J, LOGAN G A, BUICK R, et al.Archean molecular fossils and the early rise of eukaryotes[J]. Science, 1999, 285(5430):1033-1036. [58] NUTMAN A P, BENNETT V C, FRIEND C R L, et al.Rapid emergence of life shown by discovery of 3700-million-year-old microbial structures[J]. Nature, 2016, 537(7621):535-538. [59] JAVAUX E J, KNOLL A H, WALTER M R.Morphological and ecological complexity in early eukaryotic ecosystems[J]. Nature, 2001, 412(6842):66-69. [60] LAMB D M, AWRAMIK S M, CHAPMAN D J, et al.Evidence for eukaryotic diversification in the~1800 million-year-old Changzhougou Formation, North China[J]. Precambrian Research, 2009, 173(1/4):93-104. [61] ZHU Shixing, ZHU Maoyan, KNOLL A H, et al.Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China[J]. Nature Communications, 2016, 7:11500. [62] BUTTERFIELD N J.Bangiomorpha pubescens n.gen., n.sp.:implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes[J]. Paleobiology, 2000, 26(3):386-404. [63] GOLD D A, CARON A, FOURNIER G P, et al.Paleoproterozoic sterol biosynthesis and the rise of oxygen[J]. Nature, 2017, 543(7645):420-423. [64] 旷红伟, 柳永清, 彭楠, 等.神农架成冰系"南沱组"宏观藻应属大塘坡组的新证据[J]. 中国地质, 2017, 44(6):1257-1258. KUANG Hongwei, LIU Yongqing, PENG Nan, et al.Benthic macroscopic phototrophs of the Cryogenian in Shennongjia that survived in interglacial period between Sturtian and Marinoan glaciations[J]. Geology in China, 2017, 44(6):1257-1258. [65] 丰国秀, 陈盛吉.岩石中沥青反射率与镜质体反射率之间的关系[J]. 天然气工业, 1988, 8(3):20-25. FENG Guoxiu, CHEN Shengji.Relationship between the reflectance of bitumen and vitrinite in rock[J]. Natural Gas Industry, 1988, 8(3):20-25. [66] 王新贵, 王超勇, 窦鲁星.川东南新元古界南华系大塘坡组页岩气勘探潜力分析[J]. 科学技术与工程, 2015, 15(17):113-116. WANG Xingui, WANG Chaoyong, DOU Luxing.Shale gas condition and potential in Datangpo Formation of Nanhua System on the southeast of Sichuan Basin[J]. Science Technology and Engineering, 2015, 15(17):113-116. [67] 周其伟.贵州松桃地区大塘坡组下段烃源岩地球化学特征研究[D].徐州:中国矿业大学, 2016. ZHOU Qiwei.Study on geochemical characteristics of the source rocks of Datangpo Formation lower segment in Songtao area of Guizhou Province[D].Xuzhou:China University of Mining and Technology, 2016. [68] NESBITT H W, YOUNG G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717. [69] FEDO C M, NESBITT H W, YOUNG G M.Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10):921-924. [70] MCLENNAN S M.Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2):295-303. [71] 冯连君, 储雪蕾, 张启锐, 等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4):539-544. FENG Lianjun, CHU Xuelei, ZHANG Qirui, et al.CIA (Chemical index of alteration)and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4):539-544. [72] WANG Ping, DU Yuansheng, YU Wenchao, et al.The chemical index of alteration (CIA)as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews, 2020, 201:103032 [73] HARNOIS L.The CIW index:a new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4):319-322. [74] ALGEO T J, LYONS T W.Mo-total organic carbon covariation in modern anoxic marine environments:implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21:PA1016. [75] ALGEO T J, ROWE H.Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324-325:6-18. [76] ZHENG Yan, ANDERSON R F, VAN GEEN A, et al.Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(17):3085-3092. [77] HELZ G R, MILLER C V, CHARNOCK J M, et al.Mechanism of molybdenum removal from the sea and its concentration in black shales:EXAFS evidence[J]. Geochimica et Cosmochimica Acta, 1996, 60(19):3631-3642. [78] CRUSIUS J, CALVERT S, PEDERSEN T, et al.Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4):65-78. [79] ALGEO T J, TRIBOVILLARD N.Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4):211-225. [80] TAYLOR S R, MCLENNAN S M.The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265. [81] HALVERSON G P, HOFFMAN P F, SCHRAG D P, et al.A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic)in Namibia:prelude to snowball Earth?[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(6):1-24. [82] GIDDINGS J A, WALLACE M W.Sedimentology and C-isotope geochemistry of the ‘Sturtian’ cap carbonate, South Australia[J]. Sedimentary Geology, 2009, 216(1/2):1-14. [83] CHEN Xi, LI Da, LING Hongfei, et al.Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China:implications for depositional environment[J]. Progress in Natural Science, 2008, 18(4):421-429. [84] GORJAN P, VEEVERS J J, WALTER M R.Neoproterozoic sulfur-isotope variation in Australia and global implications[J]. Precambrian Research, 2000, 100(1/3):151-179. [85] TAN Zhaozhao, JIA Wanglu, LI Jie, et al.Geochemistry and molybdenum isotopes of the basal Datangpo Formation:implications for ocean -redox conditions and organic matter accumulation during the Cryogenian interglaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 563:110169. [86] MARCHIG V, GUNDLACH H, MÖLLER P, et al.Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 50(3):241-256. [87] BOSTRÖM K.Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[M]//RONA P A, BOSTRÖM K, LAUBIER L, et al.Hydrothermal Processes at Seafloor Spreading Centers.Boston, MA:Springer, 1983:473-489. [88] CANFIELD D E, THAMDRUP B.Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away[J]. Geobiology, 2009, 7(4):385-392. [89] 孙省利, 陈践发, 刘文汇, 等.海底热水活动与海相富有机质层形成的关系——以华北新元古界青白口系下马岭组为例[J]. 地质论评, 2003, 49(6):588-595. SUN Xingli, CHEN Jianfa, LIU Wenhui, et al.Hydrothermal venting on the seafloor and formation of organic-rich sediments-evidence from the Neoproterozoic Xiamaling Formation, North China[J]. Geological Review, 2003, 49(6):588-595. [90] DEMAISON G J, MOORE G T.Anoxic environments and oil source bed genesis[J]. Organic Geochemistry, 1980, 2(1):9-31. [91] TYSON R V.The genesis and palynofacies characteristics of marine petroleum source rocks[J]. Geological Society, London, Special Publications, 1987, 26(1):47-67. [92] TYSON R V, PEARSON T H.Modern and ancient continental shelf anoxia:an overview[J]. Geological Society, London, Special Publications, 1991, 58(1):1-24. [93] POULTON S W, RAISWELL R.The low-temperature geochemical cycle of iron:from continental fluxes to marine sediment deposition[J]. American Journal of Science, 2002, 302(9):774-805. [94] POULTON S W, FRALICK P W, CANFIELD D E.The transition to a sulphidic ocean~1.84 billion years ago[J]. Nature, 2004, 431(7005):173-177. [95] RAISWELL R, CANFIELD D E.Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3):219-245. [96] ALGEO T J, INGALL E.Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4):130-155. [97] WILKIN R T, BARNES H L, BRANTLEY S L.The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. [98] SEVERMANN S, LYONS T W, ANBAR A, et al.Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans[J]. Geology, 2008, 36(6):487-490. [99] TAHATA M, SAWAKI Y, YOSHIYA K, et al.The marine environments encompassing the Neoproterozoic glaciations:evidence from C, Sr and Fe isotope ratios in the Hecla Hoek Supergroup in Svalbard[J]. Precambrian Research, 2015, 263:19-42. [100] 张光亚, 温志新, 刘小兵, 等.全球原型盆地演化与油气分布[J]. 石油学报, 2020, 41(12):1538-1554. ZHANG Guangya, WEN Zhixin, LIU Xiaobing, et al.Evolution of global proto-type basin and the petroleum distribution[J]. Acta Petrolei Sinica, 2020, 41(12):1538-1554. [101] 张水昌, 张宝民, 边立曾, 等.中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3):39-48. ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al.Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3):39-48. [102] 姜雪, 刘丽芳, 孙和风, 等.气候与构造控制下湖相优质烃源岩的差异分布——以渤中凹陷为例[J]. 石油学报, 2019, 40(2):165-175. JIANG Xue, LIU Lifang, SUN Hefeng, et al.Differential distribution of high-quality lacustrine source rocks controlled by climate and tectonics:a case study from Bozhong sag[J]. Acta Petrolei Sinica, 2019, 40(2):165-175. [103] 朱光有, 赵坤, 李婷婷, 等.中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测[J]. 石油学报, 2020, 41(12):1567-1586. ZHU Guangyou, ZHAO Kun, LI Tingting, et al.Sedimentary environment, development model and distribution prediction of Lower Cambrian source rocks in South China[J]. Acta Petrolei Sinica, 2020, 41(12):1567-1586. [104] SOJO V, HERSCHY B, WHICHER A, et al.The origin of life in alkaline hydrothermal vents[J]. Astrobiology, 2016, 16(2):181-197. [105] HALBACH M, KOSCHINSKY A, HALBACH P.Report on the discovery of gallionella ferruginea from an active hydrothermal field in the deep sea[J]. International Ridge-Crest Research, 2001, 10(1):18-20. [106] SHIELDS G A.A normalised seawater strontium isotope curve:possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth[J]. eEarth, 2007, 2(2):35-42. [107] WEI Wei, WANG Dan, LI Da, et al.The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time:evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China[J]. Journal of Earth Science, 2016, 27(2):233-241. |
[1] | 王秀平, 牟传龙, 肖朝晖, 郑斌嵩, 陈尧, 王启宇, 刘惟庆. 湖北鹤峰地区二叠系大隆组黑色岩系成因——来自鹤地1井的元素地球化学证据[J]. 石油学报, 2018, 39(12): 1355-1369. |
[2] | 吴林, 管树巍, 杨海军, 任荣, 朱光有, 靳久强, 张春宇. 塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力[J]. 石油学报, 2017, 38(4): 375-385. |
[3] | 朱光有, 杜德道, 陈玮岩, 孙琦森, 李婷婷, 张志遥, 陈志勇. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报, 2017, 38(12): 1335-1342,1370. |
[4] | 王坤, 胡素云, 胡再元, 刘伟, 黄擎宇, 石书缘, 马奎, 李梅. 塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J]. 石油学报, 2016, 37(4): 439-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1