石油学报 ›› 2021, Vol. 42 ›› Issue (11): 1469-1476.DOI: 10.7623/syxb202111006

• 油田开发 • 上一篇    下一篇

压力驱动下黏附于壁面残余油膜的破裂条件

刘丽丽1,2, 孟祥铮1,2, 张雪松1,2, 刘新月3, 曹瑞波4, 夏惠芬1,2, 范家伟1,2   

  1. 1. 东北石油大学石油工程学院 黑龙江大庆 163318;
    2. 东北石油大学提高油气采收率教育部重点实验室 黑龙江大庆 163318;
    3. 中国石油吉林油田公司储运销售公司 吉林松原 138000;
    4. 大庆油田有限责任公司勘探开发研究院采收率研究一室 黑龙江大庆 163712
  • 收稿日期:2020-07-05 修回日期:2021-09-15 出版日期:2021-11-25 发布日期:2021-12-01
  • 通讯作者: 夏惠芬,女,1962年7月生,1984年获大庆石油学院采油工程专业学士学位,2001年获大庆石油学院油气田开发工程专业博士学位,现为东北石油大学石油工程学院教授,主要从事提高采收率理论与技术研究。Email:xiahuifen1948@126.com
  • 作者简介:刘丽丽,女,1981年3月生,2005年获大庆石油学院油气储运工程专业学士学位,2016年获东北石油大学石油与天然气工程专业博士学位,现为东北石油大学石油工程学院副教授,主要从事计算流体动力学研究。Email:dqliull2009@163.com
  • 基金资助:
    黑龙江省普通本科高等学校青年创新人才培养计划项目(UNPYSCT-2016121)、中国石油天然气股份有限公司科技重大专项"化学驱后提高采收率技术研究与试验"(2016E-0207)和东北石油大学引导性创新基金项目(2021YDL-22)资助。

The rupture condition of wall-adhering residual oil film under pressure drive

Liu Lili1,2, Meng Xiangzheng1,2, Zhang Xuesong1,2, Liu Xinyue3, Cao Ruibo4, Xia Huifen1,2, Fan Jiawei1,2   

  1. 1. Department of Petroleum Engineering, Northeast Petroleum University, Heilongjiang Daqing 163318, China;
    2. MOE Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Heilongjiang Daqing 163318, China;
    3. Oil and Gas Storage and Transportation Company, PetroChina Jilin Oilfield Company, Jilin Songyuan 138000, China;
    4. First Department of Enhanced Oil Recovery, Exploration and Development Research Institute, Daqing Oilfield Limited Company, Heilongjiang Daqing 163712, China
  • Received:2020-07-05 Revised:2021-09-15 Online:2021-11-25 Published:2021-12-01

摘要: 液滴黏附于固体壁面上的受力、变形、运移、破裂和分离机理的研究涉及到提高原油采收率等多种领域。以微孔道中黏附在岩石表面上的残余油和驱替液作为研究对象,采用有限差分方法并结合Front tracking界面追踪方法,数值计算压力驱动条件下,黏附于壁面残余油膜的变形,探索残余油膜的破裂分离条件;揭示残余油膜激活理论机理。数值计算结果表明,毛细管数是判断油膜变形大小的依据;毛细管数越大,油膜的变形越明显;油膜纵横比、初始润湿角和油膜自身体积影响着毛细管数的变化;对于同一驱油体系而言,判断油膜破裂分离的临界毛细管数不是一个定值。临界毛细管数越小,说明油膜越容易破裂分离。现场可以通过在驱替液中加入表面活性剂,降低驱替液与残余油膜间的界面张力,从而增大毛细管数,达到油膜破裂分离的条件,进而提高原油采收率。

关键词: 毛细管数, 破裂条件, 变形率, 压力驱动, 初始润湿角

Abstract: The study on the mechanisms of force, deformation, migration, rupture and separation of droplets adhering to the solid wall involves various fields including enhanced oil recovery (EOR), and thus is of great significance. This study targets at the residual oil and displacement fluid adhering to the rock surface in the microporous channel. Using the finite difference method and front tracking interface tracking method, a numerical calculation is performed on the deformation of the residual oil film adhering to the wall under pressure drive. Moreover, this paper explores the rupture and separation conditions of the residual oil film, and reveals the theoretical mechanism of residual oil film activation. The numerical results show that the capillary number is the basis for judging the deformation degree of oil film.The larger the capillary number, the more obvious the deformation of the oil film; the aspect ratio of oil film, the initial wetting angle and the volume of oil film affect the change of capillary number; for the same oil displacement system, the critical capillary number for judging oil film rupture and separation is not a fixed value. The smaller the critical capillary number, the easier the oil film is to rupture and separate. In the field applications, surfactants can be added to the displacement fluid to reduce the interfacial tension between the displacement fluid and the residual oil film, thereby increasing the capillary number, achieving the conditions for the rupture and separation of oil film, and further improving the oil recovery.

Key words: capillary number, rupture condition, deformation rate, pressure drive, initial wetting angle

中图分类号: