[1] BAHRAMI P,KAZEMI P,MAHDAVI S,et al. A novel approach for modeling and optimization of surfactant/polymer flooding based on genetic programming evolutionary algorithm[J].Fuel,2016,179:289-298. [2] 朱焱,高文彬,李瑞升,等.变流度聚合物驱提高采收率作用规律及应用效果[J].石油学报,2018,39(2):189-200. ZHU Yan,GAO Wenbin,LI Ruisheng,et al.Action laws and application effect of enhanced oil recovery by adjustable-mobility polymer flooding[J].Acta Petrolei Sinica,2018,39(2):189-200. [3] KAMARI A,GHARAGHEIZI F,SHOKROLLAHI A,et al.Integrating a robust model for predicting surfactant-polymer flooding performance[J].Journal of Petroleum Science and Engineering,2016,137:87-96. [4] 李杰训,赵忠山,李学军,等.大庆油田聚合物驱配注工艺技术[J].石油学报,2019,40(9):1104-1115. LI Jiexun, ZHAO Zhongshan,LI Xuejun,et al.Polymer flooding technology in Daqing oilfield[J]. Acta Petrolei Sinica,2019,40(9):1104-1115. [5] SHIRAN B S,SKAUGE A.Enhanced Oil Recovery (EOR) by combined low salinity water/polymer flooding[J].Energy & Fuels,2013,27(3):1223-1235. [6] WANG Jing,LIU Huiqing,XU Jie.Mechanistic simulation studies on viscous-elastic polymer flooding in petroleum reservoirs[J].Journal of Dispersion Science and Technology,2013,34(3):417-426. [7] 梁天博,马实英,魏东亚,等.低渗透油藏水锁机理与助排表面活性剂的优选原则[J].石油学报,2020,41(6):745-752. LIANG Tianbo,MA Shiying,WEI Dongya,et al.Water blocking mechanism of low-permeability reservoirs and screening principle of flowback surfactants[J].Acta Petrolei Sinica,2020,41(6):745-752. [8] 程杰成,周泉,周万富,等.低初黏可控聚合物凝胶在油藏深部优势渗流通道的封堵方法及应用[J].石油学报,2020,41(8):969-978. CHENG Jiecheng,ZHOU Quan,ZHOU Wanfu,et al.Plugging method of polymer gel with controllable low initial viscosity for dominant flow paths in deep reservoirs and its application[J].Acta Petrolei Sinica,2020,41(8):969-978. [9] ZHU Huajiang,LUO Jianhui,KLAUS O,et al.The impact of extensional viscosity on oil displacement efficiency in polymer flooding.Colloids and Surface[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:498-503. [10] ALMANSOUR A O,ALQURAISHI A A,ALHUSSINAN S N,et al.Efficiency of enhanced oil recovery using polymer-augmented low salinity flooding[J].Journal of Petroleum Exploration Production Technology,2017,7(4):1149-1158. [11] KHORSANDI S,QIAO Changhe,JOHNS R T.Displacement efficiency for low salinity polymer flooding including wettability alteration[R].SPE 179695,2017:417-430. [12] SEDAGHAT M H,MOHAMMADI H,RAZMI R.Application of SiO2 and TiO2 nano particles to enhance the efficiency of polymer-surfactant floods[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2016,38(1):22-28. [13] DONG Boheng,WANG Fuxian,ZHANG Xinya,et al.3D lattice Boltzmann simulation of droplet evaporation on patterned surfaces:study of pinning-depinning mechanism[J].International Journal of Multiphase Flow,2020,125:103218. [14] JIANG Mengcheng,ZHOU Biao,WANG Xichen.Comparisons and validations of contact angle models[J].International Journal of Hydrogen Energy,2018,43(12):6364-6378. [15] JAMALI M,MOGHADAM A,TAFRESHI H V,et al.Droplet adhesion to hydrophobic fibrous surfaces[J].Applied Surface Science,2018,456:626-636. [16] YANG Guang,TERZIS A,ZARIKOS L,et al.Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations[J].Chemical Engineering Journal,2019,370:444-454. [17] SHANG Xinglong,LUO Zhengyuan,BAI Bofeng.Numerical simulation of dynamic behavior of compound droplets on solid surface in shear flow by front-tracing method[J].Chemical Engineering Science,2019,193:325-335. [18] HAN Yunrui,HE Limin,WANG Shipeng,et al.Oscillation behaviors of oil droplets adhered on the solid surfaces with different wettability in a laminar flow field[J].Experimental Thermal and Fluid Science,2020,114:110057. [19] 尚兴隆,白博峰.壁面吸附复合液滴的变形与运动特性[J].工程热物理学报,2017,38(12):2636-2640. SHANG Xinglong,BAI Bofeng.Deformation and motion of compound droplet adhering to wall[J].Journal of Engineering Thermophysics,2017,38(12):2636-2640. [20] MANIK J,DALAL A,NATARAJAN G.A parametric study on the droplet detachment process from the ceiling under the effect of gravity[J].Engineering Computations,2019,36(2):445-465. [21] VU T V.Deformation and breakup of a pendant drop with solidification[J].International Journal of Heat and Mass Transfer,2018,122:341-353. [22] WANG Cunteng,LEUNG W T,XU Jingcui,et al.Droplet detachment behavior from a rough hydrophilic surface[J].Journal of Aerosol Science,2020,139:105469. [23] ADIL M,ZAID H M,CHUAN L K.Electromagnetically-induced change in interfacial tension and contact angle of oil droplet using dielectric nanofluids[J].Fuel,2020,259:116274. [24] LIANG Shaoxiang,FANG Timing,XIONG Wei,et al.Oil detachment by modified nanoparticles:a molecular dynamics simulation study[J]. Computational Materials Science,2019,170:109177. [25] BARWARI B,BURGMANN S,BECHTOLD A,et al.Experimental study of the onset of downstream motion of adhering droplets in turbulent shear flows[J].Experimental Thermal and Fluid Science,2019,109:109843. [26] BARWARI B,BURGMANN S,JANOSKE U.Hydrodynamic instabilities of adhering droplets due to a shear flow in a rectangular channel[J]. Chemie Ingenieur Technik,2019,91(7):991-1000. [27] 朱光普,姚军,孙海,等.基于界面追踪的黏弹性流体微观流动模拟[J].科学通报,2016,61(36):3973-3981. ZHU Guangpu,YAO Jun,SUN Hai,et al.Microscopic flow simulation of viscoelastic fluid based on interface tracking method[J].Chinese Science Bulletin,2016,61(36):3973-3981. [28] SHIRANI E,MASOOMI S.Deformation of a droplet in a channel flow[J].Journal of Fuel Cell Science and Technology,2008,5(4):041008. [29] SEEVARATNAM G K,DING Hang,MICHEL O,et al.Laminar flow deformation of a droplet adhering to a wall in a channel[J].Chemical Engineering Science,2010,65(16):4523-4534. [30] TAKADA N,MISAWA M,TOMIYAMA A.A phase-field method for interface-tracking simulation of two-phase flows[J].Mathematics and Computers in Simulation,2006,72(2/6):220-226. [31] LIN C Z,GUO L J,HAN X X.Numerical study of drop interface deformation and breakup in shear flow[C]//The 6th International Symposium on Multiphase Flow,Heat Mass and Energy Conversion.2010. [32] WANG Yan,SHU Chang,SHAO J Y,et al.A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio[J].Journal of Computational Physics,2015,290:336-351. [33] KOMRAKOVA A E,SHARDT O,ESKIN D,et al.Lattice Boltzmann simulations of drop deformation and breakup in shear flow[J].International Journal of Multiphase Flow,2014,59:24-43. [34] PIVELLO M R,VILLAR M M,SERFATY R,et al.A fully adaptive front tracking method for the simulation of two phase flows[J].International Journal of Multiphase Flow,2014,58:72-82. [35] 李秋香.基于格子Boltzmann方法的孔隙介质中液滴动力学行为研究[D].武汉:华中科技大学,2014. LI Qiuxiang.Lattice Boltzmann study of the droplet dynamics in porous media[D].Wuhan:Huazhong University of Science & Technology,2014. [36] 王澎,陈斌.T型微流控芯片中微液滴破裂的数值模拟[J].化工学报,2012,63(4):999-1003. WANG Peng,CHEN Bin.Numerical simulation of micro-droplet breakup in T-shaped micro-fluidic chip[J].CIESC Journal,2012,63(4):999-1003. [37] PECENKO A,KUERTEN J G M,VAN DER GELD C W M.A diffuse-interface approach to two-phase isothermal flow of a Van der Waals fluid near the critical point[J].International Journal of Multiphase Flow,2010,36(7):558-569. [38] AGGARWAL N.Computational viscoelastic drop dynamics and rheology[D].Newark:the University of Delaware,2007. |