石油学报 ›› 2023, Vol. 44 ›› Issue (7): 1167-1190.DOI: 10.7623/syxb202307012
朱光有, 李茜
收稿日期:
2022-03-07
修回日期:
2023-03-21
出版日期:
2023-07-25
发布日期:
2023-08-08
通讯作者:
李茜,男,1996年8月生,2019年获长江大学学士学位,现为中国石油勘探开发研究院博士研究生,主要从事沉积地球化学研究。Email:geolixi@126.com
作者简介:
朱光有,男,1973年9月生,2003年获石油大学(华东)博士学位,现为中国石油勘探开发研究院教授级高级工程师,主要从事油气地质与成藏研究。Email:zhuguangyou@petrochina.com.cn
基金资助:
Zhu Guangyou, Li Xi
Received:
2022-03-07
Revised:
2023-03-21
Online:
2023-07-25
Published:
2023-08-08
摘要: 白云岩储层具备巨大的油气勘探潜力,但白云岩成因问题始终存在争议,这极大地干扰了优质白云岩储层的有效预测。为进一步推动白云岩成因问题的研究,系统回顾了近20年来白云岩的成因类型和传统研究方法,以及Mg同位素、团簇同位素、晶体结构和激光原位U-Pb定年等非传统研究方法的研究进展,并对其中存在的问题进行了总结。目前已建立的白云岩成因模式多达20多种,但从本质出发白云岩成因类型可划分为原生白云岩和次生白云岩两类。通过不断探索使白云岩成因理论愈加深入和丰富,其中微生物诱导理论的兴起为原生白云岩的成因提供了更有利的证据,部分次生交代白云岩成因理论也得到了拓展和挑战。基础岩石学、阴极发光、主/微量元素、稀土元素、流体包裹体、碳/氧同位素、锶同位素等传统分析方法为探究白云岩成因做出了卓越的贡献,是探究白云岩成因的基础。非传统白云岩成因研究方法的迅速发展,为白云岩的形成和演化提供了更多有用的信息。Mg同位素可有效示踪富Mg流体来源和重建白云石化的演化过程;团簇同位素测温技术在揭示白云岩成岩温度、恢复白云石化流体性质等方面有着重要意义;白云石晶体结构中保存了其形成过程中的环境、结晶、晶体生长、流体等方面特有的证据,可作为研究白云石形成环境、形成机理的有效手段;激光原位U-Pb定年的绝对年龄对于认识白云岩成岩过程和演化具有重要的价值。然而,白云岩的形成是一个涉及不同地质条件和不同时期的多阶段综合过程,无论是传统还是非传统白云岩研究方法都存在一定的优缺点,在许多情况下,仅用某种单一成因模式或研究手段难以完全解释白云岩的成因。因此,在研究白云岩成因时,切勿简单套用甚至滥用成因模式,而是应该针对具体情况具体分析,并将传统和非传统白云岩分析手段相互结合,综合地质背景、流体性质、来源、动力学和热力学机制,从而给出更为准确和合理的白云岩成因解释。通过对白云岩成因研究的系统回顾和分析,以期为研究白云岩成因提供一些参考和新的启示。
中图分类号:
朱光有, 李茜. 白云岩成因类型与研究方法进展[J]. 石油学报, 2023, 44(7): 1167-1190.
Zhu Guangyou, Li Xi. Progress in genetic types and research methods of dolomite[J]. Acta Petrolei Sinica, 2023, 44(7): 1167-1190.
[1] 赵宗举.海相碳酸盐岩储集层类型、成藏模式及勘探思路[J].石油勘探与开发, 2008, 35(6):692-703. ZHAO Zongju.Types, accumulation models and exploration concepts of marine carbonate reservoirs[J].Petroleum Exploration and Development, 2008, 35(6):692-703. [2] 白莹, 李建忠, 刘伟, 等.塔里木盆地西北部下寒武统白云岩特征及多重白云石化模式[J].石油学报, 2021, 42(9):1174-1191. BAI Ying, LI Jianzhong, LIU Wei, et al.Characteristics and multiple dolomitization mode of the Lower Cambrian dolomite reservoir, northwestern Tarim Basin[J].Acta Petrolei Sinica, 2021, 42(9):1174-1191. [3] 潘立银, 郝毅, 梁峰, 等.白云岩储层成因的激光原位U-Pb定年和同位素地球化学新证据——以四川盆地西北部中二叠统栖霞组白云岩储层为例[J].石油学报, 2022, 43(2):223-233. PAN Liyin, HAO Yi, LIANG Feng, et al.New evidence of laser in-situ U-Pb dating and isotopic geochemistry for the genesis of dolomite reservoir:a case study of dolomite reservoir from Middle Permian Qixia Formation in northwestern Sichuan Basin[J].Acta Petrolei Sinica, 2022, 43(2):223-233. [4] 马锋, 杨柳明, 顾家裕, 等.世界白云岩油气田勘探综述[J].沉积学报, 2011, 29(5):1010-1021. MA Feng, YANG Liuming, GU Jiayu, et al.The summary on exploration of the dolomite oilfields in the world[J].Acta Sedimentologica Sinica, 2011, 29(5):1010-1021. [5] 何治亮, 马永生, 张军涛, 等.中国的白云岩与白云岩储层:分布、成因与控制因素[J].石油与天然气地质, 2020, 41(1):1-14. HE Zhiliang, MA Yongsheng, ZHANG Juntao, et al.Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J].Oil & Gas Geology, 2020, 41(1):1-14. [6] 马永生.四川盆地普光超大型气田的形成机制[J].石油学报, 2007, 28(2):9-14. MA Yongsheng.Generation mechanism of Puguang gas field in Sichuan Basin[J].Acta Petrolei Sinica, 2007, 28(2):9-14. [7] 马永生, 蔡勋育, 赵培荣.元坝气田长兴组-飞仙关组礁滩相储层特征和形成机理[J].石油学报, 2014, 35(6):1001-1011. MA Yongsheng, CAI Xunyu, ZHAO Peirong.Characteristics and formation mechanisms of reef-shoal carbonate reservoirs of Changxing-Feixianguan formations, Yuanba gas field[J].Acta Petrolei Sinica, 2014, 35(6):1001-1011. [8] 赵宗举, 范国章, 吴兴宁, 等.中国海相碳酸盐岩的储层类型、勘探领域及勘探战略[J].海相油气地质, 2007, 12(1):1-11. ZHAO Zongju, FAN Guozhang, WU Xingning, et al.Reservoir types, exploration domains and exploration strategy of marine carbonates in China[J].Marine Origin Petroleum Geology, 2007, 12(1):1-11. [9] 朱光有, 孙崇浩, 赵斌, 等.7000m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J].天然气地球科学, 2020, 31(5):587-601. ZHU Guangyou, SUN Chonghao, ZHAO Bin, et al.Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7 000 m[J].Natural Gas Geoscience, 2020, 31(5):587-601. [10] CAI Wenkai, LIU Jiahui, ZHOU Chunhui, et al.Structure, genesis and resources efficiency of dolomite:new insights and remaining enigmas[J].Chemical Geology, 2021, 573:120191. [11] 王茂林, 周进高, 陈冬霞, 等.白云石成因模式的研究进展及其适用性探讨[J].海相油气地质, 2013, 18(2):31-40. WANG Maolin, ZHOU Jingao, CHEN Dongxia, et al.Research advances of dolomite genesis models and discussion on applicable models[J].Marine Origin Petroleum Geology, 2013, 18(2):31-40. [12] WANAS H A, SALLAM E.Abiotically-formed, primary dolomite in the mid-Eocene lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt:an approach to the role of smectitic clays[J].Sedimentary Geology, 2016, 343:132-140. [13] RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G.A route for the direct crystallization of dolomite[J].American Mineralogist, 2015, 100(5/6):1172-1181. [14] BONTOGNALI T R R, VASCONCELOS C, WARTHMANN R J, et al.Dolomite-mediating bacterium isolated from the sabkha of Abu Dhabi (UAE)[J].Terra Nova, 2012, 24(3):248-254. [15] WARREN J.Dolomite:occurrence, evolution and economically important associations[J].Earth-Science Reviews, 2000, 52(1/3):1-81. [16] JIANG Lei, CAI Chunfang, WORDEN R H, et al.Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J].Sedimentology, 2016, 63(7):2130-2157. [17] DAVIES G R, SMITH L B.Structurally controlled hydrothermal dolomite reservoir facies:an overview[J].AAPG Bulletin, 2006, 90(11):1641-1690. [18] PENG Bo, LI Zongxing, LI Guorong, et al.Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan Basin, southwestern China[J].Acta Geologica Sinica-English Edition, 2018, 92(1):311-332. [19] ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al.Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J].Petroleum Exploration and Development, 2018, 45(6):983-997. [20] ZHAO Yanyan, ZHAO Mingyu, LI Sanzhong.Evidences of hydrothermal fluids recorded in microfacies of the Ediacaran cap dolostone:geochemical implications in South China[J].Precambrian Research, 2018, 306:1-21. [21] AZMY K, VEIZER J, MISI A, et al.Dolomitization and isotope stratigraphy of the Vazante Formation, São Francisco Basin, Brazil[J].Precambrian Research, 2001, 112(3/4):303-329. [22] 王珊, 曹颖辉, 杜德道, 等.塔里木盆地古城地区奥陶系鹰山组白云岩特征及孔隙成因[J].岩石学报, 2020, 36(11):3477-3492. WANG Shan, CAO Yinghui, DU Dedao, et al.Characteristics and pore genesis of dolomite in Ordovician Yingshan Formation in Gucheng area, Tarim Basin[J].Acta Petrologica Sinica, 2020, 36(11):3477-3492. [23] ALLAN J R, WIGGINS W D.Dolomite reservoirs:geochemical techniques for evaluating origin and distribution[M].Tulsa:American Association of Petroleum Geologists, 1993:129. [24] 李茜, 朱光有, 李婷婷, 等.川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制[J].石油学报, 2022, 43(11):1585-1603. LI Xi, ZHU Guangyou, LI Tingting, et al.Mg isotopic characteristics and genetic mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin[J].Acta Petrolei Sinica, 2022, 43(11):1585-1603. [25] CHANG Biao, LI Chao, LIU Deng, et al.Massive formation of early diagenetic dolomite in the Ediacaran ocean:constraints on the "dolomite problem"[J].Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25):14005-14014. [26] 张杰, JONES B, 张建勇.不同埋藏深度交代白云石晶体结构及其对白云岩储层研究的意义[J].中国石油勘探, 2014, 19(3):21-28. ZHANG Jie, JONES B, ZHANG Jianyong.Crystal structure of replacement dolomite with different buried depths and its significance to study of dolomite reservoir[J].China Petroleum Exploration, 2014, 19(3):21-28. [27] SHEN Anjiang, HU Anping, CHENG Ting, et al.Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J].Petroleum Exploration and Development, 2019, 46(6):1127-1140. [28] MENG Hailong, LV Zhengxiang, SHEN Zhongmin, et al.Carbon and oxygen isotopic composition of saline lacustrine dolomite cements and its palaeoenvironmental significance:a case study of Paleogene Shahejie Formation, Bohai Sea[J].Minerals, 2019, 9(1):13. [29] VON DER BORCH C C, JONES J B.Spherular modern dolomite from the Coorong area, South Australia[J].Sedimentology, 1976, 23(4):587-591. [30] WARREN J K.Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia[J].Journal of Sedimentary Research, 1990, 60(6):843-858. [31] CASADO A I, ALONSO-ZARZA A M, LA IGLESIA Á.Morphology and origin of dolomite in paleosols and lacustrine sequences.Examples from the Miocene of the Madrid Basin[J].Sedimentary Geology, 2014, 312:50-62. [32] LIU Deng, XU Yangyang, PAPINEAU D, et al.Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals[J].Geochimica et Cosmochimica Acta, 2019, 247:83-95. [33] VANDEGINSTE V, SNELL O, HALL M R, et al.Acceleration of dolomitization by zinc in saline waters[J].Nature Communications, 2019, 10(1):1851. [34] CHENG Jianru, MENG Xianqiang, ZHANG Enlou, et al.An early Holocene primary dolomite layer of abiotic origin in Lake Sayram, central Asia[J].Geophysical Research Letters, 2021, 48(23):e2021GL096309. [35] GREGG J M, BISH D L, KACZMAREK S E, et al.Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment:a review[J].Sedimentology, 2015, 62(6):1749-1769. [36] ZHANG Fangfu, XU Huifang, KONISHI H, et al.Dissolved sulfide-catalyzed precipitation of disordered dolomite:implications for the formation mechanism of sedimentary dolomite[J].Geochimica et Cosmochimica Acta, 2012, 97:148-165. [37] BAKER P A, KASTNER M.Constraints on the formation of sedimentary dolomite[J].Science, 1981, 213(4504):214-216. [38] LIPPMANN F.Crystal chemistry of sedimentary carbonate minerals[M]//LIPPMANN F.Sedimentary Carbonate Minerals.Berlin, Heidelberg:Springer, 1973:5-96. [39] VASCONCELOS C, MCKENZIE J A, BERNASCONI S, et al.Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J].Nature, 1995, 377(6546):220-222. [40] MEISTER P, GUTJAHR M, FRANK M, et al.Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism[J].Geology, 2011, 39(6):563-566. [41] MOORE T S, MURRAY R W, KURTZ A C, et al.Anaerobic methane oxidation and the Formation of dolomite[J].Earth and Planetary Science Letters, 2004, 229(1/2):141-154. [42] ROBERTS J A, KENWARD P A, FOWLE D A, et al.Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J].Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36):14540-14545. [43] VASCONCELOS C, MCKENZIE J A.Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J].Journal of Sedimentary Research, 1997, 67(3):378-390. [44] 甯濛, 黄康俊, 沈冰.镁同位素在"白云岩问题"研究中的应用及进展[J].岩石学报, 2018, 34(12):3690-3708. NING Meng, HUANG Kangjun, SHEN Bing.Applications and advances of the magnesium isotope on the ‘dolomite problem’[J].Acta Petrologica Sinica, 2018, 34(12):3690-3708. [45] DAYE M, HIGGINS J, BOSAK T.Formation of ordered dolomite in anaerobic photosynthetic biofilms[J].Geology, 2019, 47(6):509-512. [46] VAN LITH Y, WARTHMANN R, VASCONCELOS C, et al.Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J].Geobiology, 2003, 1(1):71-79. [47] LI Mingtao, SONG Haijun, ALGEO T J, et al.A dolomitization event at the oceanic chemocline during the Permian-Triassic transition[J].Geology, 2018, 46(12):1043-1046. [48] SÁNCHEZ-ROMÁN M, MCKENZIE J A, DE LUCA REBELLO WAGENER A, et al.Presence of sulfate does not inhibit low-temperature dolomite precipitation[J].Earth and Planetary Science Letters, 2009, 285(1/2):131-139. [49] HARDIE L A.Dolomitization; a critical view of some current views[J].Journal of Sedimentary Research, 1987, 57(1):166-183. [50] QIU Xuan, YAO Yancheng, WANG Hongmei, et al.Halophilic archaea mediate the formation of proto-dolomite in solutions with various sulfate concentrations and salinities[J].Frontiers in Microbiology, 2019, 10:480. [51] ZHANG Fangfu, XU Huifang, SHELOBOLINA E S, et al.The catalytic effect of bound extracellular polymeric substances excreted by anaerobic microorganisms on Ca-Mg carbonate precipitation:implications for the "dolomite problem"[J].American Mineralogist, 2015, 100(2/3):483-494. [52] FUSSMANN D, VON HOYNINGEN-HUENE A J E, REIMER A, et al.Authigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl, Austria[J].Biogeosciences, 2020, 17(7):2085-2106. [53] ROBERTS J A, BENNETT P C, GONZÁLEZ L A, et al.Microbial precipitation of dolomite in methanogenic groundwater[J].Geology, 2004, 32(4):277-280. [54] TONG Hongpeng, FENG Dong, PECKMANN J, et al.Environments favoring dolomite formation at cold seeps:a case study from the Gulf of Mexico[J].Chemical Geology, 2019, 518:9-18. [55] SUN Funing, HU Wenxuan, WANG Xiaolin, et al.Methanogen microfossils and methanogenesis in Permian lake deposits[J].Geology, 2021, 49(1):13-18. [56] MAZZULLO S J.Organogenic dolomitization in peritidal to deep-sea sediments[J].Journal of Sedimentary Research, 2000, 70(1):10-23. [57] ZHU Guangyou, LI Xi, LI Tingting, et al.Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin[J].Science China Earth Sciences, 2023, 66(2):334-357. [58] SÁNCHEZ-ROMÁN M, VASCONCELOS C, WARTHMANN R, et al.Microbial dolomite precipitation under aerobic conditions:results from Brejo do Espinho Lagoon (Brazil)and culture experiments[M]//SWART P K, EBERLI G P, MCKENZIE J A, et al.Perspectives in carbonate geology:a tribute to the career of Robert Nathan Ginsburg.Hoboken:International Association of Sedimentologists, 2009:167-178. [59] SÁNCHEZ-ROMÁN M, VASCONCELOS C, SCHMID T, et al.Aerobic microbial dolomite at the nanometer scale:implications for the geologic record[J].Geology, 2008, 36(11):879-882. [60] LIU Deng, YU Na, PAPINEAU D, et al.The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation:results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J].Geochimica et Cosmochimica Acta, 2019, 263:31-49. [61] WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al.Bacterially induced dolomite precipitation in anoxic culture experiments[J].Geology, 2000, 28(12):1091-1094. [62] LIU Deng, XU Yangyang, YU Qianqian, et al.Catalytic effect of microbially-derived carboxylic acids on the precipitation of Mg-calcite and disordered dolomite:implications for sedimentary dolomite formation[J].Journal of Asian Earth Sciences, 2020, 193:104301. [63] DENG Shicai, DONG Hailiang, LV Guo, et al.Microbial dolomite precipitation using sulfate reducing and halophilic bacteria:results from Qinghai Lake, Tibetan Plateau, NW China[J].Chemical Geology, 2010, 278(3/4):151-159. [64] ALIBRAHIM A, AL-GHARABALLY D, MAHMOUD H, et al.Proto-dolomite formation in microbial consortia dominated by Halomonas strains[J].Extremophiles, 2019, 23(6):765-781. [65] KRAUSE S, LIEBETRAU V, GORB S, et al.Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity:new insight into an old enigma[J].Geology, 2012, 40(7):587-590. [66] FEIN J B, MARTIN A M, WIGHTMAN P G.Metal adsorption onto bacterial surfaces:development of a predictive approach[J].Geochimica et Cosmochimica Acta, 2001, 65(23):4267-4273. [67] HUANG Yarong, YAO Qizhi, LI Han, et al.Aerobically incubated bacterial biomass-promoted formation of disordered dolomite and implication for dolomite formation[J].Chemical Geology, 2019, 523:19-30. [68] REDMILE-GORDON M, CHEN Lin.Zinc toxicity stimulates microbial production of extracellular polymers in a copiotrophic acid soil[J].International Biodeterioration & Biodegradation, 2017, 119:413-418. [69] LIU Deng, FAN Qigao, PAPINEAU D, et al.Precipitation of protodolomite facilitated by sulfate-reducing bacteria:the role of capsule extracellular polymeric substances[J].Chemical Geology, 2020, 533:119415. [70] MCCORMACK J, BONTOGNALI T R R, IMMENHAUSER A, et al.Controls on cyclic formation of Quaternary early diagenetic dolomite[J].Geophysical Research Letters, 2018, 45(8):3625-3634. [71] MCKENZIE J A, VASCONCELOS C.Dolomite Mountains and the origin of the dolomite rock of which they mainly consist:historical developments and new perspectives[J].Sedimentology, 2009, 56(1):205-219. [72] DEELMAN J C.Breaking Ostwald's rule[J].Chemie der Erde-Geochemistry, 2001, 61(3):224-235. [73] XIONG Lianqiao, YAO Genshun, XIONG Shaoyun, et al.Origin of dolomite in the Middle Devonian Guanwushan Formation of the western Sichuan Basin, western China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495:113-126. [74] ILLING L V, WELLS A J.Penecontemporary dolomite in the Persian gulf:ABSTRACT[J].AAPG Bulletin, 1964, 48(4):532-533. [75] ADAMS J E, RHODES M L.Dolomitization by seepage refluxion[J].AAPG Bulletin, 1960, 44(12):1912-1920. [76] BADIOZAMANI K.The dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J].Journal of Sedimentary Research, 1973, 43(4):965-984. [77] BUDD D A.Cenozoic dolomites of carbonate islands:their attributes and origin[J].Earth-Science Reviews, 1997, 42(1/2):1-47. [78] SUZUKI Y, IRYU Y, INAGAKI S, et al.Origin of atoll dolomites distinguished by geochemistry and crystal chemistry:Kita-Daito-Jima, northern Philippine Sea[J].Sedimentary Geology, 2006, 183(3/4):181-202. [79] ZENGER D H.Significance of supratidal dolomitization in the geologic record[J].Geological Society of America Bulletin, 1972, 83(1):1-12. [80] LUKOCZKI G, HAAS J, GREGG J M, et al.Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine-peritidal carbonates from the Mecsek Mts.(SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data[J].Marine and Petroleum Geology, 2019, 101:440-458. [81] ZHANG Shunli, LV Zhengxiang, WEN Yi, et al.Origins and geochemistry of dolomites and their dissolution in the Middle Triassic Leikoupo Formation, western Sichuan Basin, China[J].Minerals, 2018, 8(7):289. [82] YANG Xiyan, MEI Qiuyong, WANG Xinzhi, et al.Indication of rare earth element characteristics to dolomite petrogenesis-a case study of the fifth member of Ordovician Majiagou Formation in the Ordos Basin, central China[J].Marine and Petroleum Geology, 2018, 92:1028-1040. [83] MEISTER P, MCKENZIE J A, BERNASCONI S M, et al.Dolomite formation in the shallow seas of the Alpine Triassic[J].Sedimentology, 2013, 60(1):270-291. [84] HSV K J, SIEGENTHALER C.Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J].Sedimentology, 1969, 12(1/2):11-25. [85] GARAGULY I, VARGA A, RAUCSIK B, et al.Pervasive early diagenetic dolomitization, subsequent hydrothermal alteration, and Late stage hydrocarbon accumulation in a Middle Triassic carbonate sequence (Szeged Basin, SE Hungary)[J].Marine and Petroleum Geology, 2018, 98:270-290. [86] YAMAMOTO K, OTTINGER G, AL ZINATI O, et al.Geochemical, petrographical, and petrophysical evaluations of a heterogeneous, stratiform dolomite from a Barremian oil field, offshore Abu Dhabi (United Arab Emirates)[J].AAPG Bulletin, 2018, 102(1):129-152. [87] ZHENG Haofu, MA Yongsheng, CHI Guoxiang, et al.Stratigraphic and structural control on hydrothermal Dolomitization in the Middle Permian carbonates, southwestern Sichuan Basin (China)[J].Minerals, 2019, 9(1):32. [88] NGIA N R, HU Mingyi, GAO Da.Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim Basin, NW China[J].Journal of Asian Earth Sciences, 2019, 172:359-382. [89] JIANG Lei, WORDEN R H, CAI Chunfang, et al.Diagenesis of an evaporite-related carbonate reservoir in deeply buried Cambrian strata, Tarim Basin, northwest China[J].AAPG Bulletin, 2018, 102(1):77-102. [90] 张婷婷, 刘波, 秦善.川东北二叠系-三叠系白云岩成因研究[J].北京大学学报:自然科学版, 2008, 44(5):799-809. ZHANG Tingting, LIU Bo, QIN Shan.The origin of Permian and Triassic dolostones in northeastern Sichuan Province, China[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(5):799-809. [91] MELIM L A, SWART P K, EBERLI G P.Mixing-zone diagenesis in the subsurface of Florida and the Bahamas[J].Journal of Sedimentary Research, 2004, 74(6):904-913. [92] LUCZAJ J A, HARRISON III W B, SMITH WILLIAMS N.Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin[J].AAPG Bulletin, 2006, 90(11):1787-1801. [93] 张建勇, 郭庆新, 寿建峰, 等.新近纪海平面变化对白云石化的控制及对古老层系白云岩成因的启示[J].海相油气地质, 2013, 18(4):46-52. ZHANG Jianyong, GUO Qingxin, SHOU Jianfeng, et al.Control of Neogene global eustasy on dolomitization:revelation to the origin of dolomitization in paleostrata[J].Marine Origin Petroleum Geology, 2013, 18(4):46-52. [94] VAHRENKAMP V C, SWART P K.Late Cenozoic dolomites of the Bahamas:metastable analogues for the genesis of ancient platform dolomites[M]//PURSER B, TUCKER M, ZENGER D.Dolomites:a volume in honour of Dolomieu.Ortisei:International Association of Sedimentologists, 1994:133-153. [95] REN Min, JONES B.Spatial variations in the stoichiometry and geochemistry of Miocene dolomite from Grand Cayman:implications for the origin of island dolostone[J].Sedimentary Geology, 2017, 348:69-93. [96] REN Min, JONES B.Genesis of island dolostones[J].Sedimentology, 2018, 65(6):2003-2033. [97] KACZMAREK S E, SIBLEY D F.On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments:an alternative model for the geochemical evolution of natural dolomites[J].Sedimentary Geology, 2011, 240(1/2):30-40. [98] MACHEL H G.Concepts and models of dolomitization:a critical reappraisal[J].Geological Society, London, Special Publications, 2004, 235(1):7-63. [99] AL-AASM I S, CROWE R.Fluid compartmentalization and dolomitization in the Cambrian and Ordovician successions of the Huron Domain, Michigan Basin[J].Marine and Petroleum Geology, 2018, 92:160-178. [100] MACHEL H G, LONNEE J.Hydrothermal dolomite-a product of poor definition and imagination[J].Sedimentary Geology, 2002, 152(3/4):163-171. [101] GUO Chuan, CHEN Daizhao, QING Hairuo, et al.Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin, China[J].Marine and Petroleum Geology, 2016, 72:295-316. [102] DU Yang, FAN Tailiang, MACHEL H G, et al.Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe oilfield, Tarim Basin, NW China:several limitations from petrology, geochemistry, and fluid inclusions[J].Marine and Petroleum Geology, 2018, 91:43-70. [103] SIBLEY D F, NORDENG S H, BORKOWSKI M L.Dolomitization kinetics of hydrothermal bombs and natural settings[J].Journal of Sedimentary Research, 1994, 64(3a):630-637. [104] BI Dongjie, ZHAI Shikui, ZHANG Daojun, et al.Constraints of fluid inclusions and C, O isotopic compositions on the origin of the dolomites in the Xisha islands, South China Sea[J].Chemical Geology, 2018, 493:504-517. [105] 黄思静, 卿海若, 胡作维, 等.川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用[J].地球科学——中国地质大学学报, 2008, 33(1):26-34. HUANG Sijing, QING Hairuo, HU Zuowei, et al.Cathodoluminescence and diagenesis of the carbonate rocks in Feixianguan Formation of Triassic, eastern Sichuan Basin of China[J].Earth Science-Journal of China University of Geosciences, 2008, 33(1):26-34. [106] 郑剑锋, 沈安江, 刘永福, 等.多参数综合识别塔里木盆地下古生界白云岩成因[J].石油学报, 2012, 33(S2):145-153. ZHENG Jianfeng, SHEN Anjiang, LIU Yongfu, et al.Multi-parameter comprehensive identification of the genesis of Lower Paleozoic dolomite in Tarim Basin, China[J].Acta Petrolei Sinica, 2012, 33(S2):145-153. [107] 于春勇, 崔军平, 王起琮, 等.鄂尔多斯盆地南部奥陶系马家沟组中下组合白云岩稀土元素特征及其成因[J].西北大学学报:自然科学版, 2020, 50(5):819-830. YU Chunyong, CUI Junping, WANG Qicong, et al.The REE characteristics and genesis of the Middle and Lower combinations dolomite of Ordovician Majiagou in the southern Ordos Basin[J].Journal of Northwest University:Natural Science Edition, 2020, 50(5):819-830. [108] 季长军, 陈程, 吴珍汉, 等.羌塘盆地中侏罗统砂糖状白云岩流体包裹体碳-氧同位素分析及白云岩成因机制讨论[J].地质论评, 2020, 66(5):1186-1198. JI Changjun, CHEN Cheng, WU Zhenhan, et al.Carbon and oxygen isotopes analysis of the fluid inclusions in Middle Jurassic saccharoidal dolostone of Qiangtang Basin and discussion on the genesis of dolostone[J].Geological Review, 2020, 66(5):1186-1198. [109] 沈洪娟, 顾尚义, 赵思凡, 等.华南南华纪南沱冰期海洋环境的沉积地球化学记录——来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据[J].地质论评, 2020, 66(1):214-228. SHEN Hongjuan, GU Shangyi, ZHAO Sifan, et al.The sedimentary geochemical records of ocean environment during the Nantuo (Marinoan)glaciation in South China-Carbon and oxygen isotopes and trace element compositions of dolostone in Nantuo Formation, Nanhuan System, in eastern Guizhou[J].Geological Review, 2020, 66(1):214-228. [110] 冯轲, 徐胜林, 陈洪德, 等.四川盆地西南部中二叠统白云岩成因分析——来自锶同位素、稀土元素证据[J].中国岩溶, 2018, 37(5):659-670. FENG Ke, XU Shenglin, CHEN Hongde, et al.Genesis of the Middle Permian dolomite in the southwestern Sichuan Basin:evidence from strontium isotope and rare earth elements[J].Carsologica Sinica, 2018, 37(5):659-670. [111] 胡安平, 沈安江, 潘立银, 等.二元同位素在碳酸盐岩储层研究中的作用[J].天然气地球科学, 2018, 29(1):17-27. HU Anping, SHEN Anjiang, PAN Liyin, et al.The implication and significance of clumped isotope in carbonate reservoirs[J].Natural Gas Geoscience, 2018, 29(1):17-27. [112] 王泽宇, 乔占峰, 寿芳漪, 等.塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J].天然气地球科学, 2020, 31(5):602-611. WANG Zeyu, QIAO Zhanfeng, SHOU Fangyi, et al.Origin and formatio n mechanism of dolomite in Penglaiba Formation of Yonganba outcrop, Tarim Basin:evidence from ordering degree and unit cell parameters[J].Natural Gas Geoscience, 2020, 31(5):602-611. [113] 乔占峰, 邵冠铭, 罗宪婴, 等.埋藏白云岩成因类型与规模储层发育规律——基于元素面扫和激光U-Pb定年的认识[J].天然气工业, 2021, 41(9):46-56. QIAO Zhanfeng, SHAO Guanming, LUO Xianying, et al.Genetic classification and large-scale reservoir development law of burial dolomite:cognition based on LA-ICP-MS trace elemental mapping and U-Pb dating[J].Natural Gas Industry, 2021, 41(9):46-56. [114] 成晓啭, 李平平, 邹华耀, 等.川东兴隆场地区长兴组白云岩地球化学特征及流体来源[J].地质学报, 2013, 87(7):1031-1040. CHENG Xiaoping, LI Pingping, ZOU Huayao, et al.Geochemical characteristics and fluid origin of the Changxing Formation dolomitic rock in the Xinglongchang area of east Sichuan Basin[J].Acta Geologica Sinica, 2013, 87(7):1031-1040. [115] DIX G R.Patterns of burial-and tectonically controlled dolomitization in an Upper Devonian fringing-reef complex:Leduc Formation, Peace River Arch area, Alberta, Canada[J].Journal of Sedimentary Research, 1993, 63(4):628-640. [116] 何溥为, 胥旺, 张连进, 等.川中磨溪-高石梯地区栖霞组白云岩特征及成因机制[J].沉积学报, 2021, 39(6):1532-1545. HE Puwei, XU Wang, ZHANG Lianjin, et al.Characteristics and genetic mechanism of Qixia Formation dolomite in Moxi-Gaoshiti area, central Sichuan Basin[J].Acta Sedimentologica Sinica, 2021, 39(6):1532-1545. [117] WALKER G, ABUMERE O E, KAMALUDDIN B.Luminescence spectroscopy of Mn2+ rock-forming carbonates[J].Mineralogical Magazine, 1989, 53(370):201-211. [118] 苏中堂, 陈洪德, 徐粉燕, 等.鄂尔多斯盆地马家沟组白云岩地球化学特征及白云岩化机制分析[J].岩石学报, 2011, 27(8):2230-2238. SU Zhongtang, CHEN Hongde, XU Fenyan, et al.Geochemistry and dolomitization mechanism of Majiagou dolomites in Ordovician, Ordos, China[J].Acta Petrologica Sinica, 2011, 27(8):2230-2238. [119] 赵卫卫, 王宝清.鄂尔多斯盆地苏里格地区奥陶系马家沟组马五段白云岩的地球化学特征[J].地球学报, 2011, 32(6):681-690. ZHAO Weiwei, WANG Baoqing.Geochemical characteristics of dolomite from 5th Member of the Ordovician Majiagou Formation in Sulige area, Ordos Basin[J].Acta Geoscientica Sinica, 2011, 32(6):681-690. [120] 王利超, 胡文瑄, 王小林, 等.白云岩化过程中锶含量变化及锶同位素分馏特征与意义[J].石油与天然气地质, 2016, 37(4):464-472. WANG Lichao, HU Wenxuan, WANG Xiaolin, et al.Variation of Sr content and 87Sr/86Sr isotope fractionation during dolomitization and their implications[J].Oil & Gas Geology, 2016, 37(4):464-472. [121] 任影, 钟大康, 高崇龙, 等.川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义[J].石油学报, 2016, 37(9):1102-1115. REN Ying, ZHONG Dakang, GAO Chonglong, et al.Geochemical characteristics, genesis and hydrocarbon significance of dolomite in the Cambrian Longwangmiao Formation, eastern Sichuan Basin[J].Acta Petrolei Sinica, 2016, 37(9):1102-1115. [122] 刘建强, 郑浩夫, 刘波, 等.川中地区中二叠统茅口组白云岩特征及成因机理[J].石油学报, 2017, 38(4):386-398. LIU Jianqiang, ZHENG Haofu, LIU Bo, et al.Characteristics and genetic mechanism of the dolomite in the Middle Permian Maokou Formation, central Sichuan area[J].Acta Petrolei Sinica, 2017, 38(4):386-398. [123] LOTTERMOSER B G.Rare earth elements and hydrothermal ore formation processes[J].Ore Geology Reviews, 1992, 7(1):25-41. [124] 江文剑, 侯明才, 邢凤存, 等.川东南地区娄山关群白云岩稀土元素特征及其意义[J].石油与天然气地质, 2016, 37(4):473-482. JIANG Wenjian, HOU Mingcai, XING Fengcun, et al.Characteristics and indications of rare earth elements in dolomite of the Cambrian Loushanguan Group, SE Sichuan Basin[J].Oil & Gas Geology, 2016, 37(4):473-482. [125] ZHAO Yanyan, ZHENG Yongfei, CHEN Fukun.Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J].Chemical Geology, 2009, 265(3/4):345-362. [126] 胡忠贵, 郑荣才, 胡九珍, 等.川东-渝北地区黄龙组白云岩储层稀土元素地球化学特征[J].地质学报, 2009, 83(6):782-790. HU Zhonggui, ZHENG Rongcai, HU Jiuzhen, et al.Geochemical characteristics of rare earth elements of Huanglong Formation dolomites reservoirs in eastern Sichuan-northern Chongqing area[J].Acta Geologica Sinica, 2009, 83(6):782-790. [127] 胡文瑄, 陈琪, 王小林, 等.白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J].石油与天然气地质, 2010, 31(6):810-818. HU Wenxuan, CHEN Qi, WANG Xiaolin, et al.REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs[J].Oil & Gas Geology, 2010, 31(6):810-818. [128] 韩银学, 李忠, 韩登林, 等.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报, 2009, 25(10):2405-2416. HAN Yinxue, LI Zhong, HAN Denglin, et al.REE characteristics of matrix dolomites and its origin of Lower Ordovician in eastern Tabei area, Tarim Basin[J].Acta Petrologica Sinica, 2009, 25(10):2405-2416. [129] BOLHAR R, VAN KRANENDONK M J.A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J].Precambrian Research, 2007, 155(3/4):229-250. [130] KIRMACI M Z, AKDAǦ K.Origin of dolomite in the Late Cretaceous-Paleocene limestone turbidites, eastern Pontides, Turkey[J].Sedimentary Geology, 2005, 181(1/2):39-57. [131] 张鼐, 邢永亮, 曾云, 等.塔东地区寒武系白云岩的流体包裹体特征及生烃期次研究[J].石油学报, 2009, 30(5):692-697. ZHANG Nai, XING Yongliang, ZENG Yun, et al.Characteristics of fluid inclusions of Cambrian dolomite and hydrocarbon-generation history in the eastern Tarim Basin[J].Acta Petrolei Sinica, 2009, 30(5):692-697. [132] HU Zuowei, HUANG Sijing, LI Zhiming, et al.Temperatures of dolomitizing fluids in the Feixianguan Formation from the northeastern Sichuan Basin[J].Science China Earth Sciences, 2012, 55(10):1627-1640. [133] 冯明友, 强子同, 沈平, 等.四川盆地高石梯-磨溪地区震旦系灯影组热液白云岩证据[J].石油学报, 2016, 37(5):587-598. FENG Mingyou, QIANG Zitong, SHEN Ping, et al.Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin[J].Acta Petrolei Sinica, 2016, 37(5):587-598. [134] LENG M J, MARSHALL J D.Palaeoclimate interpretation of stable isotope data from lake sediment archives[J].Quaternary Science Reviews, 2004, 23(7/8):811-831. [135] KEITH M L, WEBER J N.Carbon and oxygen isotopic composition of selected limestones and fossils[J].Geochimica et Cosmochimica Acta, 1964, 28(10/11):1787-1816. [136] CRAIG H.The measurement of oxygen isotope paleotemperatures[M]//TONGIORGI E.Stable isotopes in oceanographic studies and paleotemperatures.Pisa:V.Lischi, 1965:161-182. [137] 李倩文, 金振奎, 姜福杰.白云岩成因碳氧同位素分析方法初探——以北京燕山地区元古界白云岩为例[J].岩性油气藏, 2014, 26(4):117-122. LI Qianwen, JIN Zhenkui, JIANG Fujie.Carbon and oxygen isotope analysis method for dolomite formation mechanism:a case study from Proterozoic dolomite in Yanshan area[J].Lithologic Reservoirs, 2014, 26(4):117-122. [138] 袁剑英, 黄成刚, 曹正林, 等.咸化湖盆白云岩碳氧同位素特征及古环境意义:以柴西地区始新统下干柴沟组为例[J].地球化学, 2015, 44(3):254-266. YUAN Jianying, HUANG Chenggang, CAO Zhenglin, et al.Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance:a case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin[J].Geochimica, 2015, 44(3):254-266. [139] VEIZER J, COMPSTON W.87Sr/86Sr composition of seawater during the Phanerozoic[J].Geochimica et Cosmochimica Acta, 1974, 38(9):1461-1484. [140] 贺训云, 寿建峰, 沈安江, 等.白云岩地球化学特征及成因——以鄂尔多斯盆地靖西马五段中组合为例[J].石油勘探与开发, 2014, 41(3):375-384. HE Xunyun, SHOU Jianfeng, SHEN Anjiang, et al.Geochemical characteristics and origin of dolomite:a case study from the middle assemblage of Majiagou Formation Member 5 of the west of Jingbian gas field, Ordos Basin, North China[J].Petroleum Exploration and Development, 2014, 41(3):375-384. [141] 吴兴宁, 吴东旭, 丁振纯, 等.鄂尔多斯盆地西缘奥陶系白云岩地球化学特征及成因分析[J].海相油气地质, 2020, 25(4):312-318. WU Xingning, WU Dongxu, DING Zhenchun, et al.Geochemical characteristics and genetic analysis of Ordovician dolomites in the western margin of Ordos Basin[J].Marine Origin Petroleum Geology, 2020, 25(4):312-318. [142] PETRASH D A, BIALIK O M, BONTOGNALI T R R, et al.Microbially catalyzed dolomite formation:from near-surface to burial[J].Earth-Science Reviews, 2017, 171:558-582. [143] YANG Leilei, ZHU Guangyou, LI Xinwei, et al.Influence of crystal nucleus and lattice defects on dolomite growth:geological implications for carbonate reservoirs[J].Chemical Geology, 2022, 587:120631. [144] VAHRENKAMP V C, SWART P K.New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites[J].Geology, 1990, 18(5):387-391. [145] LI Xi, ZHU Guangyou, LI Tingting, et al.Conservative behavior of Mg isotopes in dolomite during diagenesis and hydrothermal alteration:a case study in the Lower Cambrian Qiulitage Formation, Gucheng area, Tarim Basin[J].Applied Geochemistry, 2023, 148:105540. [146] TENG Fangzhen.Magnesium isotope geochemistry[J].Reviews in Mineralogy and Geochemistry, 2017, 82(1):219-287. [147] FANTLE M S, HIGGINS J.The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates:implications for the geochemical cycles of Ca and Mg[J].Geochimica et Cosmochimica Acta, 2014, 142:458-481. [148] MAVROMATIS V, MEISTER P, OELKERS E H.Using stable Mg isotopes to distinguish dolomite Formation mechanisms:a case study from the Peru Margin[J].Chemical Geology, 2014, 385:84-91. [149] GESKE A, GOLDSTEIN R H, MAVROMATIS V, et al.The magnesium isotope (δ26Mg)signature of dolomites[J].Geochimica et Cosmochimica Acta, 2015, 149:131-151. [150] LI Weiqiang, BIALIK O M, WANG Xiaomin, et al.Effects of early diagenesis on Mg isotopes in dolomite:the roles of Mn(IV)-reduction and recrystallization[J].Geochimica et Cosmochimica Acta, 2019, 250:1-17. [151] HIGGINS J A, SCHRAG D P.Constraining magnesium cycling in marine sediments using magnesium isotopes[J].Geochimica et Cosmochimica Acta, 2010, 74(17):5039-5053. [152] LI Weiqiang, BEARD B L, LI Chengxiang, et al.Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J].Geochimica et Cosmochimica Acta, 2015, 157:164-181. [153] PINILLA C, BLANCHARD M, BALAN E, et al.Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals:insights from path integral molecular dynamics[J].Geochimica et Cosmochimica Acta, 2015, 163:126-139. [154] BLÄTTLER C L, MILLER N R, HIGGINS J A.Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments[J].Earth and Planetary Science Letters, 2015, 419:32-42. [155] GALY A, YOFFE O, JANNEY P E, et al.Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J].Journal of Analytical Atomic Spectrometry, 2003, 18(11):1352-1356. [156] 孙剑, 房楠, 李世珍, 等.白云鄂博矿床成因的Mg同位素制约[J].岩石学报, 2012, 28(9):2890-2902. SUN Jian, FANG Nan, LI Shizhen, et al.Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J].Acta Petrologica Sinica, 2012, 28(9):2890-2902. [157] 钱一雄, 武恒志, 周凌方, 等.川西中三叠统雷口坡组三段-四段白云岩特征与成因——来自于岩相学及地球化学的约束[J].岩石学报, 2019, 35(4):1161-1180. QIAN Yixiong, WU Hengzhi, ZHOU Lingfang, et al.Characteristic and origin of dolomites in the third and fourth members of Leikoupo Formation of the Middle Triassic in NW Sichuan Basin:constraints in mineralogical, petrographic and geochemical data[J].Acta Petrologica Sinica, 2019, 35(4):1161-1180. [158] NING Meng, LANG Xianguo, HUANG Kangjun, et al.Towards understanding the origin of massive dolostones[J].Earth and Planetary Science Letters, 2020, 545:116403. [159] PENG Yang, SHEN Bing, LANG Xianguo, et al.Constraining dolomitization by Mg isotopes:a case study from partially dolomitized limestones of the Middle Cambrian Xuzhuang Formation, North China[J].Geochemistry, Geophysics, Geosystems, 2016, 17(3):1109-1129. [160] HUANG Kangjun, SHEN Bing, LANG Xianguo, et al.Magnesium isotopic compositions of the Mesoproterozoic dolostones:implications for Mg isotopic systematics of marine carbonates[J].Geochimica et Cosmochimica Acta, 2015, 164:333-351. [161] EILER J M, SCHAUBLE E.18O13C16O in Earth's atmosphere[J].Geochimica et Cosmochimica Acta, 2004, 68(23):4767-4777. [162] EILER J M.Paleoclimate reconstruction using carbonate clumped isotope thermometry[J].Quaternary Science Reviews, 2011, 30(25/26):3575-3588. [163] HORITA J.Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures[J].Geochimica et Cosmochimica Acta, 2014, 129:111-124. [164] GHOSH P, GARZIONE C N, EILER J M.Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates[J].Science, 2006, 311(5760):511-515. [165] FERRY J M, PASSEY B H, VASCONCELOS C, et al.Formation of dolomite at 40-80℃ in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry[J].Geology, 2011, 39(6):571-574. [166] MILLÁN M I, MACHEL H, BERNASCONI S M.Constraining temperatures of formation and composition of dolomitizing fluids in the Upper Devonian Nisku Formation (Alberta, Canada)with clumped isotopes[J].Journal of Sedimentary Research, 2016, 86(1):107-112. [167] 郑剑锋, 李晋, 季汉成, 等.二元同位素测温技术及其在白云岩储层成因研究中的应用——以塔里木盆地中下寒武统为例[J].海相油气地质, 2017, 22(2):1-7. ZHENG Jianfeng, LI Jin, JI Hancheng, et al.Clumped isotope thermometry and its application in dolomite reservoir:a case study of the Middle-Lower Cambrian in Traim Basin[J].Marine Origin Petroleum Geology, 2017, 22(2):1-7. [168] 刘嘉庆, 李忠, 颜梦珂, 等.塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化:来自团簇同位素的证据[J].石油与天然气地质, 2020, 41(1):68-82. LIU Jiaqing, LI Zhong, YAN Mengke, et al.Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin:clumped isotopic evidence[J].Oil & Gas Geology, 2020, 41(1):68-82. [169] 李平平, 王淳, 邹华耀, 等.团簇同位素在白云岩化流体恢复中的应用与局限性[J].石油与天然气地质, 2021, 42(3):738-746. LI Pingping, WANG Chun, ZOU Huayao, et al.Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J].Oil & Gas Geology, 2021, 42(3):738-746. [170] SHENTON B J, GROSSMAN E L, PASSEY B H, et al.Clumped isotope thermometry in deeply buried sedimentary carbonates:the effects of bond reordering and recrystallization[J].GSA Bulletin, 2015, 127(7/8):1036-1051. [171] REEDER R J, WENK H R.Structure refinements of some thermally disordered dolomites[J].American Mineralogist, 1983, 68(7/8):769-776. [172]FVCHTBAUER H.Sediments and sedimentary rocks[M].New York:John Wiley & Sons Inc., 1974. [173] 黄思静.四川渠县龙门峡三叠系嘉陵江组第三、四段白云石有序度及其形成条件探讨[J].矿物岩石, 1985, 5(4):57-62. HUANG Sijing.The degree of order and forming conditions of the dolomite of the third and fourth members of Lower Triassic Jialingjiang Formation in Longmenxia, Quxian, Sichuan[J].Journal of Mineralogy and Petrology, 1985, 5(4):57-62. [174] 曾理, 万茂霞, 彭英.白云石有序度及其在石油地质中的应用[J].天然气勘探与开发, 2004, 27(4):64-66. ZENG Li, WAN Maoxia, PENG Ying.Dolomite sequentiality and its application to petroleum geology[J].Natural Gas Exploration and Development, 2004, 27(4):64-66. [175] 刘永福, 殷军, 孙雄伟, 等.塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J].天然气地球科学, 2008, 19(1):126-132. LIU Yongfu, YIN Jun, SUN Xiongwei, et al.Cambrian sedimentary characteristics and origin of high-quality dolomite reservoirs in eastern Tarim Basin[J].Natural Gas Geoscience, 2008, 19(1):126-132. [176] 钟倩倩, 黄思静, 邹明亮, 等.碳酸盐岩中白云石有序度的控制因素——来自塔河下古生界和川东北三叠系的研究[J].岩性油气藏, 2009, 21(3):50-55. ZHONG Qianqian, HUANG Sijing, ZOU Mingliang, et al.Controlling factors of order degree of dolomite in carbonate rocks:a case study from Lower Paleozoic in Tahe oilfield and Triassic in northeastern Sichuan Basin[J].Lithologic Reservoirs, 2009, 21(3):50-55. [177] 宋磊, 宁正福, 丁冠阳.鄂尔多斯盆地苏东地区下古生界马五5亚段白云岩成因及特征[J].油气地质与采收率, 2017, 24(5):34-39. SONG Lei, NING Zhengfu, DING Guanyang.Genesis and characteristics of Lower Palaozoic dolomite of submember Ma55 in Majiagou Formation, Sudong region in Ordos Basin[J].Petroleum Geology and Recovery Efficiency, 2017, 24(5):34-39. [178] 陈永权, 周新源, 赵葵东, 等.塔里木盆地中寒武统泥晶白云岩红层的地球化学特征与成因探讨[J].高校地质学报, 2008, 14(4):583-592. CHEN Yongquan, ZHOU Xinyuan, ZHAO Kuidong, et al.Geochemical research on Middle Cambrian red dolostones in Tarim Basin:implications for dolostone genesis[J].Geological Journal of China Universities, 2008, 14(4):583-592. [179] 刘集银, 王自友.白云石的晶体结构特征和X-射线研究[J].矿物岩石, 1988, 8(1):28-33. LIU Jiyin, WANG Ziyou.Crystal structure characterization and X-ray study of dolomite[J].Minerals and Rocks, 1988, 8(1):28-33. [180] BANERJEE A.Estimation of dolomite formation:dolomite precipitation and dolomitization[J].Journal of the Geological Society of India, 2016, 87(5):561-572. [181] PIMIENTA L, ESTEBAN L, SAROUT J, et al.Supercritical CO2 injection and residence time in fluid-saturated rocks:evidence for calcite dissolution and effects on rock integrity[J].International Journal of Greenhouse Gas Control, 2017, 67:31-48. [182] SORAI M.Effects of calcite dissolution-reprecipitation on caprock's sealing performance under geological CO2 storage[C]//AGU Fall Meeting Abstracts 2021.New Orleans:AGU, 2021:H15H-1131. [183] SULPIS O, LIX C, MUCCI A, et al.Calcite dissolution kinetics at the interface between a calcite-rich simulated sediment and natural seawater[R].AGU EP53C-0997, 2016. [184] MURPHY A E, JAKUBEK R S, STEELE A, et al.Raman spectroscopy provides insight into carbonate rock fabric based on calcite and dolomite crystal orientation[J].Journal of Raman Spectroscopy, 2021, 52(6):1155-1166. [185] PINTO H, HAAPASILTA V, LOKHANDWALA M, et al.Adsorption and migration of single metal atoms on the calcite (10.4)surface[J].Journal of Physics:Condensed Matter, 2017, 29(13):135001. [186] MOORBATH S, TAYLOR P N, ORPEN J L, et al.First direct radiometric dating of Archaean stromatolitic limestone[J].Nature, 1987, 326(6116):865-867. [187] GODEAU N, DESCHAMPS P, GUIHOU A, et al.U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs:case of the Urgonian Limestone, France[J].Geology, 2018, 46(3):247-250. [188] KAUROVA O K, OVCHINNIKOVA G V, GOROKHOV I M.U-Th-Pb systematics of Precambrian carbonate rocks:dating of the formation and transformation of carbonate sediments[J].Stratigraphy and Geological Correlation, 2010, 18(3):252-268. [189] 胡安平, 沈安江, 梁峰, 等.激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J].石油与天然气地质, 2020, 41(1):37-49. HU Anping, SHEN Anjiang, LIANG Feng, et al.Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J].Oil & Gas Geology, 2020, 41(1):37-49. [190] 乔占峰, 张哨楠, 沈安江, 等.基于激光U-PB定年的埋藏白云岩形成过程——以塔里木盆地永安坝剖面下奥陶统蓬莱坝组为例[J].岩石学报, 2020, 36(11):3493-3509. QIAO Zhanfeng, ZHANG Shaonan, SHEN Anjiang, et al.Laser ablated U-Pb dating-based determination of burial dolomitization process:a case study of Lower Ordovician Penglaiba Formation of Yonganba outcrop in Tarim Basin[J].Acta Petrologica Sinica, 2020, 36(11):3493-3509. [191] WILSON E N, HARDIE L A, PHILLIPS O M.Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite; the Triassic Latemar buildup, northern Italy[J].American Journal of Science, 1990, 290(7):741-796. [192] 朱光有, 李茜, 李婷婷, 等.镁同位素示踪白云石化流体迁移路径——以四川盆地石炭系黄龙组为例[J].地质学报, 2023, 97(3):753-771. ZHU Guangyou, LI Xi, LI Tingting, et al.Magnesium isotope trace dolomitization fluid migration path:a case study of the Carboniferous Huanglong Formation in the Sichuan Basin[J].Acta Geologica Sinica, 97(03):753-771 [193] LI Xi, ZHU Guangyou, CHEN Zhiyong, et al.Mg isotopic geochemistry and origin of Early Ordovician dolomite and implications for the formation of high-quality reservoir in the Tabei area, Tarim Basin, NW China[J].Journal of Asian Earth Sciences, 2023, 255:105757. |
[1] | 朱光有, 艾依飞, 李婷婷, 王萌, 陈玮岩, 张志遥, 赵坤, 李茜, 张岩, 段鹏珍, 石军. 非常规同位素在石油地质学中的应用与油气地球化学新进展[J]. 石油学报, 2024, 45(4): 718-754. |
[2] | 潘立银, 郝毅, 梁峰, 胡安平, 俸月星, 赵建新. 白云岩储层成因的激光原位U-Pb定年和同位素地球化学新证据——以四川盆地西北部中二叠统栖霞组白云岩储层为例[J]. 石油学报, 2022, 43(2): 223-233. |
[3] | 李茜, 朱光有, 李婷婷, 周磊, 吴雨轩, 田连杰. 川中地区寒武系洗象池组白云岩Mg同位素特征与成因机制[J]. 石油学报, 2022, 43(11): 1585-1603. |
[4] | 李旺荣, 王淑菊, 魏国祥, 臧希文, 朱伟, 徐浚. ZSM-5沸石分子筛晶体结构的研究——工-放-9晶体结构的测定[J]. 石油学报, 1983, 4(2): 105-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1