[1] EL-KADY A H,AMIN T,KHAN F,et al.Analysis of CO2 pipeline regulations from a safety perspective for offshore carbon capture,utilization,and storage (CCUS)[J].Journal of Cleaner Production,2024,439:140734. [2] 杨勇.中国碳捕集、驱油与封存技术进展及发展方向[J].石油学报,2024,45(1):325-338. YANG Yong.Technology progress and development direction of carbon capture,oil-flooding and storage in China[J].Acta Petrolei Sinica,2024,45(1):325-338. [3] 贾承造.中国石油工业上游前景与未来理论技术五大挑战[J].石油学报,2024,45(1):1-14. JIA Chengzao.Prospects and five future theoretical and technical challenges of the upstream petroleum industry in China[J].Acta Petrolei Sinica,2024,45(1):1-14. [4] CHEN Lei,HU Yanwei,YANG Kai,et al.Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline [J].Energy,2023,283:129060. [5] 苏现波,王乾,于世耀,等.基于低负碳减排的深部煤系气一体化开发技术路径[J].石油学报,2023,44(11):1931-1948. SU Xianbo,WANG Qian,YU Shiyao,et al.Integrated development technology path for deep coal measure gas based on low-negative carbon emission reduction[J].Acta Petrolei Sinica,2023,44(11):1931-1948. [6] LOG A M,HAMMER M,MUNKEJORD S T.A flashing flow model for the rapid depressurization of CO2 in a pipe accounting for bubble nucleation and growth[J].International Journal of Multiphase Flow,2024,171:104666. [7] 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心.中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)—中国CCUS路径研究[R].北京:生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021. Chinese Academy of Environmental Planning,Insitute of Roc and Soil Mechanics,Chinese Academy of Sciences,The Adminisaive Center for China’s Agenda 21.Annual report on carbon dioxide capture,utilization,and storage (CCUS)in China (2021)- Research on the CCUS Pathway in China[R].Chinese Academy of Environmental Planning,Insitute of Roc and Soil Mechanics,Chinese Academy of Sciences,The Adminisaive Center for China’s Agenda 21. [8] FENG Yaorong,HUO Chunyong,ZHUANG Chuanjing,et al.Fracture control of the 2nd west to east gas pipeline in China[J].Procedia Structural Integrity,2019,22:219-228. [9] 甄莹,常群,李发根,等.基于裂纹尖端张开角的Battelle双曲线模型修正[J].石油学报,2022,43(11):1642-1651. ZHEN Ying,CHANG Qun,LI Fagen,et al.Battelle two-curve model correction based on crack tip opening angle[J].Acta Petrolei Sinica,2022,43(11):1642-1651. [10] MICHAL G,ØSTBY E,DAVIS B J,et al.An empirical fracture control model for dense-phase CO2 carrying pipelines[C]//Proceedings of the 13th International Pipeline Conference.Virtual:ASME,2020. [11] COSHAM A,JONES D G,ARMSTRONG K,et al.Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipe[C]//Proceedings of the 11th International Pipeline Conference.Calgary,Alberta,Canada:ASME,2016. [12] MICHAL G,DAVIS B,ØSTBY E,et al.CO2SAFE-ARREST:a full-scale burst test research program for carbon dioxide pipelines-Part 2:is the BTCM out of touch with dense-phase CO2[C]// Proceedings of the 12th International Pipeline Conference.Calgary,Alberta,Canada:ASME,2018. [13] GODBOLE A,LIU Xiong,MICHAL G,et al.CO2SAFE-ARREST:a full-scale burst test research program for carbon dioxide pipelines-Part 3:dispersion modelling[C]//Proceedings of the 12th International Pipeline Conference.Calgary,Alberta,Canada:ASME,2018. [14] COSHAM A,JONES D G,ARMSTRONG K,et al.Analysis of two dense phase carbon dioxide full-scale fracture propagation tests[C]//Proceedings of the 10th International Pipeline Conference.Calgary,Alberta,Canada:ASME,2014. [15] SKARSVÅG H L,HAMMER M,MUNKEJORD S T,et al.Towards an engineering tool for the prediction of running ductile fractures in CO2 pipelines[J].Process Safety and Environmental Protection,2023,171:667-679. [16] LINTON V,LEINUM B H,NEWTON R,et al.CO2SAFE-ARREST:a full-scale burst test research program for carbon dioxide pipelines - Part 1:project overview and outcomes of test 1[C]//Proceedings of the 12th International Pipeline Conference.Calgary,Alberta,Canada:ASME,2018. [17] DET NORSKE VERITAS.Design and operation of carbon dioxide pipelines:DNVGL-RP-F104[S].Veritasveien,Norway:DNV,2021. [18] TALEMI R H,BROWNB S,MARTYNOV S,et al.Assessment of brittle fractures in CO2 transportation pipelines:a hybrid fluid-structure interaction model[J].Procedia Structural Integrity,2016,2:2439-2446. [19] AURSAND E,DUMOULIN S,HAMMER M,et al.Fracture propagation control in CO2 pipelines:validation of a coupled fluid-structure model[J].Engineering Structures,2016,123:192-212. [20] NORDHAGEN H O,MUNKEJORD S T,HAMMER M,et al.A fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibration[J].Engineering Structures,2017,143:245-260. [21] KEIM V,PAREDES M,NONN A,et al.FSI-simulation of ductile fracture propagation and arrest in pipelines:comparison with existing data of full-scale burst tests[J].International Journal of Pressure Vessels and Piping,2020,182:104067. [22] KEIM V,MARX P,NONN A,et al.Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures[J].International Journal of Pressure Vessels and Piping,2019,175:103934. [23] LIAO Yi,LIU Changlei,LIAO Kexi,et al.Dynamic fracture analysis of natural gas pipelines based on a cohesive zone model[J].International Journal of Structural Stability and Dynamics,2022,22(12): 2250118. [24] SUN Dexin,CHEN Yujie,CHAO Haoyu,et al.A dynamic fracture finite element model of the buried gas transmission pipeline combining soil constraints and gas decompression[J].Engineering Fracture Mechanics,2022,276:108864. [25] ZHU Xiaohua,DENG Zilong,LIU Weiji.Dynamic fracture analysis of buried steel gas pipeline using cohesive model[J].Soil Dynamics and Earthquake Engineering,2020,128:105881. [26] 甄莹,常群,曹宇光,等.纳入裂尖位置实时预测的天然气管道裂纹扩展模拟方法[J].中国 石油大学学报(自然科学版),2022,46(4):143-151. ZHEN Ying,CHANG Qun,CAO Yuguang,et al.Simulation method for crack propagation of natural gas pipelines with real-time prediction of crack tip position[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(4):143-151. [27] TALEMI R,COOREMAN S,MAHGEREFTEH H,et al.A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipeline[J]. Theoretical and Applied Fracture Mechanics,2019,101:224-235. [28] BASSINDALE C,WANG Xin,TYSON W R,et al.Fast ductile fracture:effect of inertia on propagation resistance and CTOA in pipe steels[J].International Journal of Pressure Vessels and Piping,2020,187:104163. [29] FREDJ A,DINOVITZER A.Three-dimensional response of buried pipelines subjected to large soil deformation effects:part I—3D continuum modeling using ALE and SPH formulations[C]//Proceedings of the 8th International Pipeline Conference.Calgary:ASME,2010. [30] FREDJ A,DINOVITZER A.Three-dimensional response of buried pipelines subjected to large soil deformation effects:part II—effects of the soil restraint on the response of pipe/soil systems[C]//Proceedings of the 8th International Pipeline Conference.Calgary:ASME,2010. [31] 赵青,李玉星,李顺丽.超临界二氧化碳管道杂质对节流温降的影响[J].石油学报,2016,37(1):111-116. ZHAO Qing,LI Yuxing,LI Shunli.Influence of impurities in pipeline on the temperature drop of supercritical carbon dioxide throttling[J].Acta Petrolei Sinica,2016,37(1):111-116. [32] B ASSINDALE C,WANG Xin,TYSON W R,et al.Modeling the effect of backfill on dynamic fracture propagation in steel pipelines[J].Journal of Pipeline Science and Engineering,2022,2(3):100069. [33] ZHEN Ying,ZU Yizhen,CAO Yuguang,et al.Effect of accurate prediction of real-time crack tip position on dynamic crack behaviors in gas pipeline[J].Journal of Natural Gas Science and Engineering,2021,94:104136. [34] GRUBEN G,MACDONALD K,MUNKEJORD S T,et al.Pipeline fracture control concepts for Norwegian offshore carbon capture and storage[C]//Proceedings of the 13th International Pipeline Conference.Virtual:ASME,2020. |