石油学报 ›› 2017, Vol. 38 ›› Issue (12): 1381-1389.DOI: 10.7623/syxb201712005

• 地质勘探 • 上一篇    下一篇

高演化富有机质页岩储层特征及孔隙形成演化——以黔南地区下寒武统九门冲组为例

刘忠宝1,2,3, 高波1,2,3, 胡宗全1,2,3, 杜伟3, 聂海宽3, 姜涛4   

  1. 1. 页岩油气富集机理与有效开发国家重点实验室 北京 100083;
    2. 中国石油化工集团公司页岩油气勘探开发重点实验室 北京 100083;
    3. 中国石油化工股份有限公司石油勘探开发研究院 北京 100083;
    4. 北京大学地球与空间科学学院 北京 100871
  • 收稿日期:2017-06-12 修回日期:2017-10-26 出版日期:2017-12-25 发布日期:2018-01-05
  • 通讯作者: 刘忠宝,男,1978年12月生,2001年获中国地质大学(北京)学士学位,2006年获中国地质大学(北京)博士学位,现为中国石油化工股份有限公司石油勘探开发研究院高级工程师,主要从事非常规油气地质、层序地层及碳酸盐岩沉积储层研究。Email:liuzb.syky@sinopec.com
  • 作者简介:刘忠宝,男,1978年12月生,2001年获中国地质大学(北京)学士学位,2006年获中国地质大学(北京)博士学位,现为中国石油化工股份有限公司石油勘探开发研究院高级工程师,主要从事非常规油气地质、层序地层及碳酸盐岩沉积储层研究。Email:liuzb.syky@sinopec.com
  • 基金资助:

    国家重大科技专项(2016ZX05060、2016ZX05061)和中国石油化工股份有限公司科技部项目(P15114)资助。

Reservoir characteristics and pores formation and evolution of high maturated organic rich shale: a case study of Lower Cambrian Jiumenchong Formation, southern Guizhou area

Liu Zhongbao1,2,3, Gao Bo1,2,3, Hu Zongquan1,2,3, Du Wei3, Nie Haikuan3, Jiang Tao4   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China;
    2. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production, Beijing 100083, China;
    3. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China;
    4. School of Earth and Space Science, Peking University, Beijing 100871, China
  • Received:2017-06-12 Revised:2017-10-26 Online:2017-12-25 Published:2018-01-05

摘要:

为厘清高演化富有机质页岩孔隙特征及形成机理,以上扬子黔南地区下寒武统九门冲组页岩为例,采用岩石薄片、全岩X射线衍射、低温氮气吸附、高压压汞-吸附联合测定、氦气孔隙度测试、氩离子抛光-扫描电镜、热演化史及孔隙演化史恢复等多种技术方法,开展了高演化富有机质页岩孔隙结构、类型及储集性能研究,并基于成岩压实和热演化过程建立了富有机质页岩微观孔隙形成演化模式。研究结果表明:1下寒武统高演化富有机质页岩总比表面积平均值为12.66 m2/g,总孔容平均值为11.54×10-3cm3/g,两者具有较好的正相关关系,与下志留统页岩相比,总比表面积与总孔容均略低。孔隙以微孔和介孔为主,宏孔基本不发育。2富有机质页岩孔隙类型以有机质孔为主,孔径极小,一般以小于30 nm为主,孔边界形态不规则,无机质矿物质孔基本不发育。3与志留系页岩相比,其储集性能相对较差,平均孔隙度仅为2.80%,水平渗透率为垂直渗透率的1~3倍,平均值约2倍,反映其水平页理欠发育。4高演化富有机质页岩孔隙形成演化主要受成岩压实作用控制的无机质矿物粒间孔隙演化过程、热演化作用控制的生烃—成油—油气转化序列中有机质孔隙的形成过程及后期孔隙保存状态下天然气散失与补给平衡过程共同控制。

关键词: 页岩气, 页岩储层, 有机质孔, 孔隙类型, 下寒武统, 上扬子地区

Abstract:

To clarify the pore characteristics and formation mechanism of high-maturity organic rich shale, taking the shale in Lower Cambrian Jiumenchong Formation, the southern of Upper Yangtze Guizhou area as an example, a study is conducted on the pore structures, types and reserving properties of high-maturity organic rich shale with the use of multiple technical methods involving the rock thin section, the total-rock X-ray diffraction, low-temperature nitrogen adsorption, high pressure Hg injection-adsorption simultaneous determination, helium porosity test, argon ion polishing-scanning electron microscope, thermal evolution and pore evolutionary history recovery. Meanwhile, a micro pore formation-evolution model of high-maturity organic rich shale is established based on the diagenesis compaction and thermal evolution process. The research results show that firstly, the average values of total specific surface area and total pore volume in Lower Cambrian high-maturity organic rich shale are 12.66 m2/g and 11.54×10-3cm3/g, respectively, and both possess a favorable positive correlation relationship. Compared with the Lower Silurian shale, the total specific surface area is slightly lower than the total pore volume. The pores are dominated by micro pores and meso pores, while macro pores are basically undeveloped. Secondly, organic rich shale is dominated by organic pore with ultra-small aperture, which is usually less than 30 nm, and the pore boundary configuration is irregular basically without the development of inorganic mineral pores. Thirdly, compared with the Silurian shale, the reserving performance is poorer with an average porosity of only 2.80%, and the horizontal permeability is 1-3 times of vertical permeability and 2 times of average value, reflecting the less development of horizontal laminations. Fourthly, the pore formation and evolution of high-maturity organic rich shale is mainly jointly controlled by the evolutionary process of inorganic mineral intergranular pores under the control of diagenesis compaction, the organic pore formation process in hydrocarbon generation-oil generation-hydrocarbon transformation sequence under the control of thermal evolution, and natural gas dissipation-supply equilibration process under the state of late pore preservation.

Key words: shale gas, shale reservoir, organic pore, pore type, Lower Cambrian, Upper Yangtze area

中图分类号: