[1] 张光亚,马锋,梁英波,等. 全球深层油气勘探领域及理论技术进展[J].石油学报,2015,36(9):1156-1166. ZHANG Guangya,MA Feng,LIANG Yingbo,et al.Domain and theory-technology progress of global deep oil & gas exploration[J].Acta Petrolei Sinica,2015,36(9):1156-1166. [2] 严思明,杨珅,王富辉,等.新型耐高温油井降失水剂的合成与性能评价[J].石油学报,2016,37(5):672-679. YAN Siming,YANG Shen,WANG Fuhui,et al.Synthesis and performance evaluation of novel high-temperature-resistant fluid loss additive for oil wells[J].Acta Petrolei Sinica,2016,37(5):672-679. [3] 罗鸣,冯永存,桂云,等.高温高压钻井关键技术发展现状及展望[J].石油科学通报,2021,6(2):228-244. LUO Ming,FENG Yongcun,GUI Yun,et al.Development status and prospect of key technologies for high tempera-ture and high pressure drilling[J].Petroleum Science Bulletin,2021,6(2):228-244. [4] 岳家平,徐翔,李早元,等.高温大温差固井水泥浆体系研究[J].钻井液与完井液,2012,29(2):59-62. YUE Jiaping,XU Xiang,LI Zaoyuan,et al.Research on high temperature and large temperature difference cement slurry system[J].Drilling Fluid & Completion Fluid,2012,29(2):59-62. [5] 程小伟,余杨,张曲,等.新型螯合物型缓凝剂的合成与性能研究[J].硅酸盐通报,2020,39(11):3683-3690. CHENG Xiaowei,YU Yang,ZHANG Qu,et al.Study on synthesis and performance of new chelate retarder[J].Bulletin of The Chinese Ceramic Society,2020,39(11):3683-3690. [6] 严思明,吴亚楠,杨圣月,等.高温缓凝剂AMCT的合成及其性能评价[J].精细化工,2017,34(5):562-568. YAN Siming,WU Yanan,YANG Shengyue,et al.Synthesis and evaluation of high temperature retarder AMCT[J].Fine Chemicals,2017,34(5):562-568. [7] 郭锦棠,石英,于永金,等.新型聚合物缓凝剂的合成与性能研究[J].天津大学学报:自然科学与工程技术版,2017,50(5):453-458. GUO Jintang,SHI Ying,YU Yongjin,et al.Synthesis and property of new copolymer retarder[J].Journal of Tianjin University:Science and Technology,2017,50(5):453-458. [8] TIEMEYER C,PLANK J.Synthesis,characterization,and working mechanism of a synthetic high temperature (200℃)fluid loss polymer for oil well cementing containing allyloxy-2-hydroxy propane sulfonic (AHPS)acid monomer[J].Journal of Applied Polymer Science,2013,128(1):851-860. [9] 左天鹏,程小伟,吴昊,等.一种长封固段固井用缓凝剂的制备及性能评价[J].精细化工,2022,39(3):618-626. ZUO Tianpeng,CHENG Xiaowei,WU Hao,et al.Preparation and performance evaluation of a kind of retarder used in long cementing interval[J].Fine Chemicals,2022,39(3):618-626. [10] TIEMEYER C,PLANK J.Working mechanism of a high temperature (200℃)synthetic cement retarder and its interaction with an AMPS®-based fluid loss polymer in oil well cement[J].Journal of Applied Polymer Science,2012,124(6):4772-4781. [11] XIA Xiujian,GUO Jintang,CHEN Di,et al.Hydrophobic associated copolymer as a wide temperature range synthetic cement retarder and its effect on cement hydration[J].Journal of Applied Polymer Science,2017,134(35):e45242. [12] 郭锦棠,夏修建,刘硕琼,等.适用于长封固段固井的新型高温缓凝剂HTR-300L[J].石油勘探与开发,2013,40(5):611-615. GUO Jintang,XIA Xiujian,LIU Shuoqiong,et al.A high temperature retarder HTR-300L used in long cementing interval[J].Petroleum Exploration and Development,2013,40(5):611-615. [13] 夏修建,郭锦棠,于永金,等.固井用新型高温缓凝剂的研究与应用[J].钻井液与完井液,2015,32(2):72-75. XIA Xiujian,GUO Jintang,YU Yongjin,et al.Study and application of new high temperature retarder for well cementing[J].Drilling Fluid & Completion Fluid,2015,32(2):72-75. [14] DIMITROV I,TRZEBICKA B,MVLLER A H E,et al.Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities[J].Progress in Polymer Science,2007,32(11):1275-1343. [15] GUO Xing,LI Dan,YANG Guang,et al.Thermo-triggered drug release from actively targeting polymer micelles[J].ACS Applied Materials & Interfaces,2014,6(11):8549-8559. [16] 欧红娟,李明,蒙飞,等.长封固段大温差固井水泥浆技术研究进展[J].硅酸盐通报,2017,36(1):104-109. OU Hongjuan,LI Ming,MENG Fei,et al.Research progress on key technologies of cementing slurry for long sealing section and large temperature difference[J].Bulletin of the Chinese Ceramic Society,2017,36(1):104-109. [17] LIU Ruixue,FRAYLICH M,SAUNDERS B R.Thermoresponsive copolymers:from fundamental studies to applications[J].Colloid and Polymer Science,2009,287(6):627-643. [18] BADI N.Non-linear PEG-based thermoresponsive polymer systems[J].Progress in Polymer Science,2017,66:54-79. [19] ROY D,BROOKS W L A,SUMERLIN B S.New directions in thermoresponsive polymers[J].Chemical Society Reviews,2013,42(17):7214-7243. [20] CHEN Xin,WANG Chengwen,XUE Yucheng,et al.A novel thermo-thickening viscosity modifying admixture to improve settlement stability of cement slurry under high temperatures[J].Construction and Building Materials,2021,295:123606. [21] CHEN Xin,WANG Chengwen,WANG Yanji,et al.Prevention strategy of cement slurry sedimentation under high temperature.Part 1:a polymer with continuous thermo-thickening behavior from 48 to 148℃[J].The Journal of Physical Chemistry C,2019,123(30):18573-18584. [22] XIE Bingqiang,QIU Zhengsong,HUANG Weian,et al.Characterization and aqueous solution behavior of novel thermo-associating polymers[J].Journal of Macromolecular Science,Part A,2013,50(2):230-237. [23] 王成文,王桓,薛毓铖,等.高密度水泥浆高温沉降稳定调控热增黏聚合物研制与性能[J].石油学报,2020,41(11):1416-1424. WANG Chengwen,WANG Huan,XUE Yucheng,et al.Development and performance of thermo-viscosifying polymer for high temperature sedimentation control of high density cement slurry[J].Acta Petrolei Sinica,2020,41(11):1416-1424. [24] 王洪涛,冯丽娟,何萌,等.不同烷基链长的聚氧乙烯醚萘类发泡剂合成及性能研究[J].石油科学通报,2020,5(4):587-596. WANG Hongtao,FENG Lijuan,HE Meng,et al.Preparation and properties of sodium polyoxyethylene ether naphthalene sulfonate with different chain-length alkyl groups[J].Petroleum Science Bulletin,2020,5(4):587-596. [25] 钟汉毅,高鑫,邱正松,等.环保型β-环糊精聚合物微球高温降滤失作用机理[J].石油学报,2021,42(8):1091-1102. ZHONG Hanyi,GAO Xin,QIU Zhengsong,et al.Mechanism of filtration loss reduction of environment-friendly β-cyclodextrin polymer microspheres under high temperatures[J].Acta Petrolei Sinica,2021,42(8):1091-1102. [26] 李荣强,徐承凤,韦鲁滨,等.含Gemini表面活性剂结构单元的新型两亲聚电解质的合成及聚集行为[J].高等学校化学学报,2010,31(10):2024-2029. LI Rongqiang,XU Chengfeng,WEI Lubin,et al.Synthesis and self-aggregation behavior of novel amphiphilic polyelectrolytes containing Gemini surfactant units[J].Chemical Journal of Chinese Universities,2010,31(10):2024-2029. [27] LI Rongqiang,ZHANG Junli,HAN Yu,et al.Self-assembly behavior of amphiphilic polyelectrolyte with ultrahigh charge density[J].Colloid and Polymer Science,2018,296(5):941-949. [28] WANG Lin,SHI Xuefeng,WANG Jinben.A temperature-responsive supramolecular hydrogel:preparation,gel-gel transition and molecular aggregation[J].Soft Matter,2018,14(16):3090-3095. [29] LI Rongqiang,YAN Fengmei,ZHANG Junli,et al.The self-assembly properties of a series of polymerizable cationic Gemini surfactants:effect of the acryloxyl group[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,444:276-282. [30] 王成文,周伟,陈新,等.纳米SiO2溶胶对高温加砂油井水泥石强度作用规律及机制[J].中国石油大学学报:自然科学版,2021,45(6):79-86. WANG Chengwen,ZHOU Wei,CHEN Xin,et al.Effect of nano-SiO2 sol on strength of cement with addition of silica sands under high temperature[J].Journal of China University of Petroleum:Edition of Natural Science,2021,45(6):79-86. [31] 孙金声,杨景斌,白英睿,等.超分子凝胶形成机理及其在油气钻采工程领域应用现状和前景[J].石油学报,2022,43(9):1334-1350. SUN Jinsheng,YANG Jingbin,BAI Yingrui,et al.Formation mechanism of supramolecular gel and its application status and prospect in the field of oil and gas drilling and production engineering[J].Acta Petrolei Sinica,2022,43(9):1334-1350. [32] 孙金声,雷少飞,白英睿,等.高分子材料的力学状态转变机理及在钻井液领域的应用展望[J].石油学报,2021,42(10):1382-1394. SUN Jinsheng,LEI Shaofei,BAI Yingrui,et al.Mechanical transformation mechanism of polymer materials and its application prospects in the field of drilling fluids[J].Acta Petrolei Sinica,2021,42(10):1382-1394. [33] 任妍君,翟玉芬,路岩岩.抗高温高密度可逆油基钻井液体系[J].石油学报,2023,44(5):841-851. REN Yanjun,ZHAI Yufen,LU Yanyan.Reversible oil-based drilling fluid with high-temperature resistance and high density[J].Acta Petrolei Sinica,2023,44(5):841-851. [34] 葛际江,郭洪宾,张天赐,等.耐温耐盐酚醛冻胶研制及性能调控机理[J].石油学报,2022,43(8):1145-1157. GE Jijiang,GUO Hongbin,ZHANG Tianci,et al.Development of temperature and salinity resistant phenolic gel and its performance regulation mechanism[J].Acta Petrolei Sinica,2022,43(8):1145-1157. [35] MEI Kaiyuan,CHENG Xiaowei,ZHANG Liwei,et al.Self-healing mechanism of Zn-enhanced cement stone:an application for sour natural gas field[J].Construction and Building Materials,2019,227:116651. [36] DIETZSCH M,BARZ M,SCHVLER T,et al.PAA-PAMPS copolymers as an efficient tool to control CaCO3 scale Formation[J].Langmuir,2013,29(9):3080-3088. [37] BOUTRIS C,CHATZI E G,KIPARISSIDES C.Characterization of the LCST behaviour of aqueous poly (N-isopropylacrylamide)solutions by thermal and cloud point techniques[J].Polymer,1997,38(10):2567-2570. [38] CHEUNG J,JEKNAVORIAN A,ROBERTS L,et al.Impact of admixtures on the hydration kinetics of Portland cement[J].Cement and Concrete Research,2011,41(12):1289-1309. [39] PANG Xueyu,JIMENEZ W C,IVERSON B J.Hydration kinetics modeling of the effect of curing temperature and pressure on the heat evolution of oil well cement[J].Cement and Concrete Research,2013,54:69-76. [40] KONG Xiangming,EMMERLING S,PAKUSCH J,et al.Retardation effect of styrene-acrylate copolymer latexes on cement hydration[J].Cement and Concrete Research,2015,75:23-41. [41] JANSEN D,NEUBAUER J,GOETZ-NEUNHOEFFER F,et al.Change in reaction kinetics of a Portland cement caused by a superplasticizer-calculation of heat flow curves from XRD data[J].Cement and Concrete Research,2012,42(2):327-332. [42] KONG Xiangming,SHI Zhihua,LU Zichen.Synthesis of novel polymer nano-particles and their interaction with cement[J].Construction and Building Materials,2014,68:434-443. [43] SCRIVENER K L,NONAT A.Hydration of cementitious materials,present and future[J].Cement and Concrete Research,2011,41(7):651-665. [44] DURAND A,HOURDET D.Synthesis and thermoassociative properties in aqueous solution of graft copolymers containing poly (N-isopropylacrylamide)side chains[J].Polymer,1999,40(17):4941-4951. [45] HOURDET D,L'ALLORET F,AUDEBERT R.Synthesis of thermoassociative copolymers[J].Polymer,1997,38(10):2535-2547. |