石油学报 ›› 2021, Vol. 42 ›› Issue (12): 1543-1555.DOI: 10.7623/syxb202112001
• 地质勘探 • 下一篇
彭平安1,2,3, 贾承造4
收稿日期:
2021-04-09
修回日期:
2021-07-12
出版日期:
2021-12-25
发布日期:
2021-12-30
通讯作者:
彭平安,男,1960年11月生,1982年获浙江大学地球化学专业学士学位,1991年获中国科学院广州地球化学研究所博士学位,现为中国科学院院士、中国科学院广州地球化学研究所研究员,主要从事油气地球化学与环境地球化学相关研究工作。
作者简介:
彭平安,男,1960年11月生,1982年获浙江大学地球化学专业学士学位,1991年获中国科学院广州地球化学研究所博士学位,现为中国科学院院士、中国科学院广州地球化学研究所研究员,主要从事油气地球化学与环境地球化学相关研究工作。Email:pinganp@gig.ac.cn
基金资助:
Peng Ping'an1,2,3, Jia Chengzao4
Received:
2021-04-09
Revised:
2021-07-12
Online:
2021-12-25
Published:
2021-12-30
摘要: 烃源岩油气演化阶段的细分与资源潜力评价对深层常规和非常规油气勘探、深层基础石油地质学问题的研究具有重要意义。深层烃源岩的油气演化可划分为4个阶段,即轻质油(挥发性油)、凝析油气、湿气和干气,也对应着深层的4种油气类型。烃源岩和储层中的原油体系均可形成这些油气。通过模拟实验评价深层烃源岩的生烃潜力,提出了4个油气演化阶段的划分指标。鉴于深层烃源岩的油气资源潜力评价需要考虑正常原油是否排出和排出量多少等问题,采用先进行生烃高峰排烃、再进行限定体系加热的实验方案,建立了基于排烃作用的深层油气演化模式。该模式可粗略用于深层烃源岩油气资源潜力评价。借鉴基于开采气油比(GORr)划分油气藏类型的经验,利用烃源岩裂解模拟产物的气油比(GORs)和甲烷含量作为实验室热模拟油气演化阶段的划分指标。将GORs快速上升时的值142 m3/m3(800标准立方英尺/桶)、890 m3/m3(5 000标准立方英尺/桶)、3 562 m3/m3(20 000标准立方英尺/桶)以及甲烷含量95%分别作为轻质油、凝析油气、湿气、干气的上部界限值。考虑到无法通过岩心样品直接获取GORs,因此,这些界限值还不能用于实际剖面的油气演化阶段的划分。鉴于勘探家常用镜质体反射率(Ro)或等效镜质体反射率(RoE)划分烃源岩的生烃阶段,因此,采用抑制的Ro模型将实验室的温度标尺转化为Ro,求出上述界限值的Ro范围。值得注意的是,通过限定体系热模拟实验求出的Ro值比实际地层测定的RoE值要高。轻质油和凝析油气按成因可分为4类,其中,A类由Ⅰ—Ⅱ型有机质经排烃后形成,B类由未经排烃的Ⅱ—Ⅲ型有机质形成,C类由原油裂解形成,D类由次生改造形成。目前对原生轻质油、凝析油气(A类、B类和C类油气)的研究还很不够,需要加强。深层轻质油、凝析油气资源除受烃源岩的有机质含量、类型和成熟度影响外,还与下列深层地质因素有关:①正常油(黑油)的排烃效率;②是否存在大规模的油藏裂解;③是否有来自不同烃源层的油气混合。中国发育有多种成因类型的轻质油和凝析油气,具有广阔的轻质油、凝析油气资源勘探前景。
中图分类号:
彭平安, 贾承造. 深层烃源演化与原生轻质油/凝析油气资源潜力[J]. 石油学报, 2021, 42(12): 1543-1555.
Peng Ping'an, Jia Chengzao. Evolution of deep source rock and resource potential of primary light oil and condensate[J]. Acta Petrolei Sinica, 2021, 42(12): 1543-1555.
[1] TISSOT B P, WELTE D H.Petroleum formation and occurrence[M].2nd ed.Berlin:Springer, 1984:218. [2] UNGERER P, PELET R.Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins[J].Nature, 1987, 327(6117):52-54. [3] TANG Y, JENDEN P D, NIGRINI A, et al.Modeling early methane generation in coal[J].Energy & Fuels, 1996, 10(3):659-671. [4] BEHAR F, KRESSMANN S, RUDKIEWICZ J L, et al.Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J].Organic Geochemistry, 1992, 19(1/3):173-189. [5] BEHAR F, VANDENBROUCKE M, TANG Y, et al.Thermal cracking of kerogen in open and closed systems:determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J].Organic Geochemistry, 1997, 26(5/6):321-339. [6] DIECKMANN V, SCHENK H J, HORSFIELD B, et al.Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales[J].Fuel, 1998, 77(1/2):23-31. [7] 刘金钟, 唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报, 1998, 43(11):1187-1191. LIU Jinzhong, TANG Yongchun.Kinetics of early methane generation from Green River shale[J].Chinese Science Bulletin, 1998, 43(22):1908-1912. [8] PENG Ping'an, ZOU Yanrong, FU Jiamo.Progress in generation kinetics studies of coal-derived gases[J].Petroleum Exploration and Development, 2009, 36(3):297-306. [9] SHUAI Yanhua, PENG Ping'an, ZOU Yanrong, et al.Kinetic modeling of individual gaseous component formed from coal in a confined system[J].Organic Geochemistry, 2006, 37(8):932-943. [10] ZOU Yanrong, ZHAO Changyi, WANG Yunpeng, et al.Characteristics and origin of natural gases in the Kuqa depression of Tarim Basin, NW China[J].Organic Geochemistry, 2006, 37(3):280-290. [11] SHI Jiyang, MACKENZIE A S, ALEXANDER R, et al.A biological marker investigation of petroleums and shales from the Shengli oilfield, The People's Republic of China[J].Chemical Geology, 1982, 35(1/2):1-31. [12] 傅家谟, 盛国英, 江继纲.膏盐沉积盆地形成的未成熟石油[J].石油与天然气地质, 1985, 6(2):150-158. FU Jiamo, SHENG Guoying, JIANG Jigang.Immature oil originated from a saline deposit-bearing basin[J].Oil & Gas Geology, 1985, 6(2):150-158. [13] 王铁冠, 钟宁宁, 侯读杰, 等.低熟油气形成机理与分布[M].北京:石油工业出版社, 1995:240. WANG Tieguan, ZHONG Ningning, HOU Dujie, et al.Genetic mechanism and occurrence of immature hydrocarbon[M].Beijing:Petroleum Industry Press, 1995:240. [14] 张林晔, 张守春, 黄开权, 等.半咸水湖相未熟油成因机理模拟实验研究[J].科学通报, 1999, 44(4):361-367. ZHANG Linye, ZHANG Shouchun, HUANG Kaiquan, et al.Simulation experiment of immature oil genetic mechanism in lake facies of semi-salt water[J].Chinese Science Bulletin, 1999, 44(11):980-988. [15] 黄第藩, 张大江, 王培荣, 等.中国未成熟石油成因机制和成藏条件[M].北京:石油工业出版社, 2003. HUANG Difan, ZHANG Dajiang, WANG Peirong, et al.Genetic mechanism and accumulation condition of immature oil in China[M].Beijing:Petroleum Industry Press, 2003. [16] BASKIN D K, PETERS K E.Early generation characteristics of a sulfur-rich monterey kerogen[J].AAPG Bulletin, 1992, 76(1):1-13. [17] TOMIĆ J, BEHAR F, VANDENBROUCKE M, et al.Artificial maturation of monterey kerogen (type II-S) in a closed system and comparison with type II kerogen:implications on the fate of sulfur[J].Organic Geochemistry, 1995, 23(7):647-660. [18] 戴金星.煤成气及鉴别理论研究进展[J].科学通报, 2018, 63(14):1290-1305. DAI Jinxing.Coal-derived gas theory and its discrimination[J].Chinese Science Bulletin, 2018, 63(14):1290-1305. [19] 徐永昌, 王晓锋, 史宝光.低熟气——煤成气理念的延伸[J].石油勘探与开发, 2009, 36(3):408-412. XU Yongchang, WANG Xiaofeng, SHI Baoguang.Low-mature gas.An extension of the concept of coal-formed gas[J].Petroleum Exploration and Development, 2009, 36(3):408-412. [20] 宋岩, 徐永昌.天然气成因类型及其鉴别[J].石油勘探与开发, 2005, 32(4):24-29. SONG Yan, XU Yongchang.Origin and identification of natural gases[J].Petroleum Exploration and Development, 2005, 32(4):24-29. [21] 沈平, 徐永昌, 郑建京.景谷盆地低演化油气的同位素地球化学特征[J].沉积学报, 2002, 20(1):151-155. SHEN Ping, XU Yongchang, ZHENG Jianjing.Isotopic geochemical characteristics of low mature petroleum in Jinggu Basin[J].Acta Sedimentologica Sinica, 2002, 20(1):151-155. [22] 杨海军, 朱光有.塔里木盆地凝析气田的地质特征及其形成机制[J].岩石学报, 2013, 29(9):3233-3250. YANG Haijun, ZHU Guangyou.The condensate gas field geological characteristics and its formation mechanism in Tarim Basin[J].Acta Petrologica Sinica, 2013, 29(9):3233-3250. [23] 薛永安, 李慧勇, 许鹏, 等.渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现[J].中国海上油气, 2021, 33(1):13-22. XUE Yongan, LI Huiyong, XU Peng, et al.Recognition of oil and gas accumulation of Mesozoic covered buried hills in Bohai Sea area and the discovery of BZ 13-2 oilfield[J].China Offshore Oil and Gas, 2021, 33(1):13-22. [24] HACKLEY P C, VALENTINE B J, HATCHERIAN J J.On the petrographic distinction of bituminite from solid bitumen in immature to early mature source rocks[J].International Journal of Coal Geology, 2018, 196:232-245. [25] CHEN Jian, JIA Wanglu, XIAO Zhongyao, et al.Catalytic hydropyrolysis of asphaltenes in marine oil from the Tarim Basin, NW China:implications to complicated oil charging histories in an old composite basin[J].Marine and Petroleum Geology, 2020, 114:104232. [26] WEI Zhifu, ZOU Yanrong, CAI Yulan, et al.Kinetics of oil group-type generation and expulsion:an integrated application to Dongying depression, Bohai Bay Basin, China[J].Organic Geochemistry, 2012, 52:1-12. [27] 柳宇柯.高演化阶段页岩有机质纳米孔隙、化学结构与力学性能研究[D].广州:中国科学院广州地球化学研究所, 2019. LIU Yuke.Nanopore development, chemical structure and mechanical properties of organic matter in highly matured shale[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019. [28] 郭慧娟.鄂尔多斯盆地东南部延长组页岩的孔隙结构与热演化特征[D].广州:中国科学院广州地球化学研究所, 2017. GUO Huijuan.Pore structure and thermal evolution of Yanchang shales from southeastern Ordos Basin[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017. [29] 张辉.镜质组反射率抑制、裂变径迹演化与高成熟有机质有机碳含量恢复动力学研究[D].广州:中国科学院广州地球化学研究所, 2008. ZHANG Hui.Suppression of vitrinite reflectance, apatite fission track analysis and the recovery of original organic carbon abundance for high-mature kerogen:kinetic approaches[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2008. [30] 宋一涛, 吴庆余, 周文.未熟-低熟油的形成与成因机制[M].东营:石油大学出版社, 2004. SONG Yitao, WU Qingyu, ZHOU Wen.Formation and genetic mechanism of immature oil[M].Dongying:University of Petroleum Press, 2004. [31] 彭平安, 盛国英, 傅家谟, 等.高硫未成熟原油非干酪根成因的证据[J].科学通报, 1998, 43(6):636-638. PENG Ping'an, SHENG Guoying, FU Jiamo, et al.Origin of immature sulfur-rich oil in Jianghan oil field[J].Chinese Science Bulletin, 1998, 43(8):678-681. [32] 张林晔, 张春华.低熟油生成机理及成油体系——以济阳坳陷牛庄洼陷南部斜坡为例[M].北京:地质出版社, 1999. ZHANG Linye, ZHANG Chunhua.Origins of immature oils and related petroleum systems:case studies from the southern slope of Niuzhuang sag, Jiyang depression[M].Beijing:Geology Publishing House, 1999. [33] PANG Xiongqi, LI Maowen, LI Sumei, et al.Geochemistry of petroleum systems in the Niuzhuang south slope of Bohai Bay Basin.Part 2:evidence for significant contribution of mature source rocks to "immature oils" in the Bamianhe field[J].Organic Geochemistry, 2003, 34(7):931-950. [34] PANG Xiongqi, LI Maowen, LI Sumei, et al.Geochemistry of petroleum systems in the Niuzhuang south slope of Bohai Bay Basin:part 3.Estimating hydrocarbon expulsion from the Shahejie Formation[J].Organic Geochemistry, 2005, 36(4):497-510. [35] PETERS K E, CURRY D J, KACEWICZ M.An overview of basin and petroleum system modeling:definitions and concepts[M]//PETERS K E, CURRY D J, KACEWICZ M.Basin modeling:new horizons in research and applications.Tulsa:AAPG, 2012:1-16. [36] JARVIE D M, HILL R J, RUBLE T E, et al.Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91(4):475-499. [37] MCCAIN JR W D, BRIDGES B.Volatile oils and retrograde gases-What's the difference[J].Petroleum Engineer International, 1994, 66:35-36. [38] WAPLES D W.The kinetics of in-reservoir oil destruction and gas formation:constraints from experimental and empirical data, and from thermodynamics[J]. Organic Geochemistry, 2000, 31(6):553-575. [39] BOYD D T.Oklahoma's oil and gas industry and the global forces controlling it[J].The Shale Shaker, 2006, 56(5):145-154. [40] WANG Qiang, JIA Wanglu, YU Chiling, et al.Potential of light oil and condensates from deep source rocks revealed by the pyrolysis of type I/II kerogens after oil generation and expulsion[J].Energy & Fuels, 2020, 34(8):9262-9274. [41] 王强, 彭平安, 张文正, 等.鄂尔多斯盆地延长组7段页岩全组分定量生烃模拟及原油可动性评价[J].石油学报, 2018, 39(5):541-553. WANG Qiang, PENG Ping'an, ZHANG Wenzheng, et al.Quantitative full-component hydrocarbon-generating simulation and crude oil mobility evaluation of shale in 7th Member of Yanchang Formation, Ordos Basin[J].Acta Petrolei Sinica, 2018, 39(5):541-553. [42] CHEN Junhong, FU Jiamo, SHENG Guoying, et al.Diamondoid hydrocarbon ratios:novel maturity indices for highly mature crude oils[J].Organic Geochemistry, 1996, 25(3/4):179-190. [43] FANG Chenchen, XIONG Yongqiang, LI Yun, et al.The origin and evolution of adamantanes and diamantanes in petroleum[J].Geochimica et Cosmochimica Acta, 2013, 120:109-120. [44] LIU Dehan, XIAO Xianming, TIAN Hui, et al.Sample maturation calculated using Raman spectroscopic parameters for solid organics:methodology and geological applications[J].Chinese Science Bulletin, 2013, 58(11):1285-1298. [45] 肖贤明, 周秦, 程鹏, 等.高-过成熟海相页岩中矿物-有机质复合体(MOA) 的显微激光拉曼光谱特征作为成熟度指标的意义[J].中国科学:地球科学, 2020, 50(9):1228-1241. XIAO Xianming, ZHOU Qin, CHENG Peng, et al.Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J].Science China Earth Sciences, 2020, 63(10):1540-1552. [46] ZHANG Shuichang, SU Jin, HUANG Haiping, et al.Genetic origin of sour gas condensates in the Paleozoic dolomite reservoirs of the Tazhong uplift, Tarim Basin[J].Marine and Petroleum Geology, 2015, 68:107-119. [47] ZHU Guangyou, ZHANG Baotao, YANG Haijun, et al.Secondary alteration to ancient oil reservoirs by late gas filling in the Tazhong area, Tarim Basin[J].Journal of Petroleum Science and Engineering, 2014, 122:240-256. [48] CHAI Zhi, CHEN Zhonghong, LIU Hua, et al.Light hydrocarbons and diamondoids of light oils in deep reservoirs of Shuntuoguole low uplift, Tarim Basin:implication for the evaluation on thermal maturity, secondary alteration and source characteristics[J].Marine and Petroleum Geology, 2020, 117:104388. [49] 薛永安, 王奇, 牛成民, 等.渤海海域渤中凹陷渤中19-6深层潜山凝析气藏的充注成藏过程[J].石油与天然气地质, 2020, 41(5):891-902. XUE Yong'an, WANG Qi, NIU Chengmin, et al.Hydrocarbon charging and accumulation of BZ 19-6 gas condensate field in deep buried hills of Bozhong depression, Bohai Sea[J].Oil & Gas Geology, 2020, 41(5):891-902. [50] 杨海军, 陈永权, 田军, 等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探, 2020, 25(2):62-72. YANG Haijun, CHEN Yongquan, TIAN Jun, et al.Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration, 2020, 25(2):62-72. [51] 杨海军, 邓兴梁, 张银涛, 等.塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J].中国石油勘探, 2020, 25(3):13-23. YANG Haijun, DENG Xingliang, ZHANG Yintao, et al.Great discovery and its significance of exploration for Ordovician ultra-deep fault -controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin[J].China Petroleum Exploration, 2020, 25(3):13-23. [52] 田立新, 刘杰, 张向涛, 等.珠江口盆地惠州26-6大中型泛潜山油气田勘探发现及成藏模式[J].中国海上油气, 2020, 32(4):1-11. TIAN Lixin, LIU Jie, ZHANG Xiangtao, et al.Discovery and accumulation pattern of HZ26-6 large-medium sized pan-buried hill oil and gas field in Pearl River Mouth Basin[J].China Offshore Oil and Gas, 2020, 32(4):1-11. [53] 陈建平, 孙永革, 钟宁宁, 等.地质条件下湖相烃源岩生排烃效率与模式[J].地质学报, 2014, 88(11):2005-2032. CHEN Jianping, SUN Yongge, ZHONG Ningning, et al.The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame[J].Acta Geologica Sinica, 2014, 88(11):2005-2032. [54] 黄振凯, 刘全有, 黎茂稳, 等.鄂尔多斯盆地长7段泥页岩层系排烃效率及其含油性[J].石油与天然气地质, 2018, 39(3):513-521. HUANG Zhenkai, LIU Quanyou, LI Maowen, et al.Hydrocarbon expulsion efficiency and oil-bearing property of the shale system in Chang 7 Member, Ordos Basin[J].Oil & Gas Geology, 2018, 39(3):513-521. [55] 马卫, 李剑, 王东良, 等.烃源岩排烃效率及其影响因素[J].天然气地球科学, 2016, 27(9):1742-1751. MA Wei, LI Jian, WANG Dongliang, et al.Hydrocarbon expulsion efficiency of source rocks and its influencing factors[J].Natural Gas Geoscience, 2016, 27(9):1742-1751. [56] 陈瑞银, 王汇彤, 陈建平, 等.实验方法评价松辽盆地烃源岩的生排烃效率[J].天然气地球科学, 2015, 26(5):915-921. CHEN Ruiyin, WANG Huitong, CHEN Jianping, et al.An experimental method to evaluate the hydrocarbon generation and expulsion efficiency in the Songliao Basin[J].Natural Gas Geoscience, 2015, 26(5):915-921. [57] 张文正, 杨华, 李剑锋, 等.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析[J].石油勘探与开发, 2006, 33(3):289-293. ZHANG Wenzheng, YANG Hua, LI Jianfeng, et al.Leading effect of high-class source rock of Chang 7 in Ordos Basin on enrichment of low permeability oil-gas accumulation-hydrocarbon generation and expulsion mechanism[J].Petroleum Exploration and Development, 2006, 33(3):289-293. [58] GAO Yuan, ZOU Yanrong, LIANG Tian, et al.Jump in the structure of Type I kerogen revealed from pyrolysis and 13C DP MAS NMR[J]. Organic Geochemistry, 2017, 112:105-118. [59] 李明诚.石油与天然气运移[M].3版.北京:石油工业出版社, 2004. LI Mingcheng.Oil and gas migration[M].3rd ed.Beijing:Petroleum Industry Press, 2004. [60] GAI Haifeng, TIAN Hui, CHENG Peng, et al.Influence of retained bitumen in oil-prone shales on the chemical and carbon isotopic compositions of natural gases:implications from pyrolysis experiments[J].Marine and Petroleum Geology, 2019, 101:148-161. [61] LI Erting, PAN Changchun, YU Shuang, et al.Hydrocarbon generation from coal, extracted coal and bitumen rich coal in confined pyrolysis experiments[J].Organic Geochemistry, 2013, 64:58-75. [62] JENDEN P D, TITLEY P A, WORDEN R H.Enrichment of nitrogen and 13C of methane in natural gases from the Khuff Formation, Saudi Arabia, caused by thermochemical sulfate reduction[J].Organic Geochemistry, 2015, 82:54-68. [63] ZHOU Chenxi, YU Chenxi, HUANG Wenyu, et al.Oil maturities, mixing and charging episodes in the cratonic regions of the Tarim Basin, NW China:insight from biomarker and diamondoid concentrations and oil bulk properties[J].Marine and Petroleum Geology, 2021, 126:104903. [64] DAHL J E, MOLDOWAN J M, PETERS K E, et al.Diamondoid hydrocarbons as indicators of natural oil cracking[J].Nature, 1999, 399(6731):54-57. [65] WEI Zhibin, MOLDOWAN J M, ZHANG Shuichang, et al.Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking:geochemical models from hydrous pyrolysis[J].Organic Geochemistry, 2007, 38(2):227-249. [66] JIANG Wenmin, LI Yun, YANG Chao, et al.Organic geochemistry of source rocks in the Baiyun sag of the Pearl River Mouth Basin, South China Sea[J].Marine and Petroleum Geology, 2021, 124:104836. [67] WEI Zhibin, MOLDOWAN J M, PETERS K E, et al.The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley:implications for biodegradation of diamondoids in petroleum reservoirs[J].Organic Geochemistry, 2007, 38(11):1910-1926. [68] ZHAN Zhaowen, LIN Xiaohui, ZOU Yanrong, et al.Chemometric differentiation of crude oil families in the southern Dongying depression, Bohai Bay Basin, China[J].Organic Geochemistry, 2019, 127:37-49. [69] 田军, 杨海军, 吴超, 等.博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J].天然气工业, 2020, 40(1):11-19. TIAN Jun, YANG Haijun, WU Chao, et al.Discovery of Well Bozi 9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J].Natural Gas Industry, 2020, 40(1):11-19. [70] 王玉华, 梁江平, 张金友, 等.松辽盆地古龙页岩油资源潜力及勘探方向[J].大庆石油地质与开发, 2020, 39(3):20-34. WANG Yuhua, LIANG Jiangping, ZHANG Jinyou, et al.Resource potential and exploration direction of Gulong shale oil in Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3):20-34. [71] HUANG Shipeng, LIU Dan, WANG Zecheng, et al.Genetic origin of gas condensate in Permian and Triassic strata in the southern Sichuan Basin, SW China[J].Organic Geochemistry, 2015, 85:54-65. [72] HUANG Shipeng, WANG Zecheng, LV Zonggang, et al.Geochemical identification of marine and terrigenous condensates-a case study from the Sichuan Basin, SW China[J].Organic Geochemistry, 2014, 74:44-58. [73] 李登华, 李建忠, 张斌, 等.四川盆地侏罗系致密油形成条件、资源潜力与甜点区预测[J].石油学报, 2017, 38(7):740-752. LI Denghua, LI Jianzhong, ZHANG Bin, et al.Formation condition, resource potential and sweet-spot area prediction of Jurassic tight oil in Sichuan Basin[J].Acta Petrolei Sinica, 2017, 38(7):740-752. [74] 王强.鄂尔多斯盆地延长组长7段致密油和页岩油的地球化学特征及成因[D].广州:中国科学院广州地球化学研究所, 2018. WANG Qiang.Geochemical characteristics and genesis of tight and shale oil from the 7th Member of Yanchang Formation in Ordos Basin[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018. [75] 何海清, 支东明, 唐勇, 等.准噶尔盆地阜康凹陷康探1井重大突破及意义[J].中国石油勘探, 2021, 26(2):1-11. HE Haiqing, ZHI Dongming, TANG Yong, et al.A great discovery of Well Kangtan 1 in the Fukang sag in the Junggar Basin and its significance[J].China Petroleum Exploration, 2021, 26(2):1-11. [76] ZHAN Zhaowen, TIAN Yankuan, ZOU Yanrong, et al.De-convoluting crude oil mixtures from Palaeozoic reservoirs in the Tabei uplift, Tarim Basin, China[J].Organic Geochemistry, 2016, 97:78-94. |
[1] | 黄亚浩, 汪如军, 文志刚, 张银涛, 崔仕提, 李梦勤, 王彭, 何涛华. 塔里木盆地富满油田深层—超深层油气成藏过程[J]. 石油学报, 2024, 45(6): 947-960. |
[2] | 王清华, 徐振平, 张荣虎, 杨海军, 杨宪彰. 塔里木盆地油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 15-32. |
[3] | 席胜利, 闫伟, 刘新社, 张才利, 殷亮亮, 董国栋, 井向辉, 魏柳斌. 鄂尔多斯盆地天然气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 33-51,132. |
[4] | 支东明, 李建忠, 周志超, 焦立新, 范谭广, 李斌, 梁辉, 王兴刚. 三塘湖盆地油气勘探开发新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 115-132. |
[5] | 王必金, 包汉勇, 吴世强, 郭战峰, 郭丽彬, 赵文, 李睿姗. 江汉盆地油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 133-146,240. |
[6] | 张洪安, 李令喜, 陈清棠, 万晶, 史大海, 彭国桃, 周勇水. 银额盆地油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 147-162. |
[7] | 徐长贵, 周家雄, 杨海风, 叶涛. 渤海海域油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 163-182. |
[8] | 高阳东, 刘军, 彭光荣, 陈林, 王梓颐, 史玉玲. 珠江口盆地油气勘探新领域及资源潜力[J]. 石油学报, 2024, 45(1): 183-201. |
[9] | 邓勇, 胡德胜, 朱继田, 刘国昌, 陈奎, 童传新, 张道军, 徐新德, 满勇, 游君君, 满晓, 吴云鹏, 周刚, 张建新. 北部湾盆地油气成藏规律与勘探新领域、新类型、资源潜力[J]. 石油学报, 2024, 45(1): 202-225. |
[10] | 刘岩生, 张佳伟, 黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报, 2024, 45(1): 312-324. |
[11] | 刘可禹, 刘建良. 盆地沉积充填演化与含油气系统耦合模拟方法在超深层油气成藏模拟中的应用——以四川盆地中部震旦系灯影组为例[J]. 石油学报, 2023, 44(9): 1445-1458. |
[12] | 陶士振, 胡素云, 王建, 白斌, 庞正炼, 王民, 陈燕燕, 陈悦, 杨怡青, 金旭, 贾进华, 张天舒, 林森虎, 孟元林, 刘鸿儒, 王岚, 吴因业. 中国陆相致密油形成条件、富集规律与资源潜力[J]. 石油学报, 2023, 44(8): 1222-1239. |
[13] | 高阳东, 彭光荣, 陈兆明, 姜大朋, 马宁, 李潇, 吕华星, 高中亮. 珠江口盆地开平凹陷深水古近系勘探重大发现及意义[J]. 石油学报, 2023, 44(7): 1029-1040. |
[14] | 朱光有, 李茜. 白云岩成因类型与研究方法进展[J]. 石油学报, 2023, 44(7): 1167-1190. |
[15] | 王建, 郭秋麟, 赵晨蕾, 王玉满, 于京都, 柳庄小雪, 陈宁生. 中国主要盆地页岩油气资源潜力及发展前景[J]. 石油学报, 2023, 44(12): 2033-2044. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1093
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1