[1] 郭旭升,王濡岳,申宝剑,等. 中国页岩气地质特征、资源潜力与发展方向[J].石油勘探与开发,2025,52(1):15-28. GUO Xusheng,WANG Ruyue,SHEN Baojian,et al.Geological characteristics,resource potential,and development direction of shale gas in China[J].Petroleum Exploration and Development,2025,52(1):15-28. [2] 赵文智,李建忠,杨涛,等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发,2016,43(4):499-510. ZHAO Wenzhi,LI Jianzhong,YANG Tao,et al.Geological difference and its significance of marine shale gases in South China[J].Petroleum Exploration and Development,2016,43(4):499-510. [3] 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发,2015,42(6):689-701. ZOU Caineng,DONG Dazhong,WANG Yuman,et al.Shale gas in China:characteristics,challenges and prospects (Ⅰ)[J].Petroleum Exploration and Development,2015,42(6):689-701. [4] 梁峰,姜巍,戴赟,等.四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J].天然气地球科学,2022,33(5):755-763. LIANG Feng,JIANG Wei,DAI Yun,et al.Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas,Sichuan Basin[J].Natural Gas Geoscience,2022,33(5): 755-763. [5] JENDEN P D,KAPLAN I R,POREDA R J,et al.Origin of nitrogen-rich natural gases in the California Great Valley:evidence from helium,carbon and nitrogen isotope ratios[J].Geochimica et Cosmochimica Acta,1988,52(4):815-861. [6] MENG Kang,ZHANG Tongwei,SHAO Deyong,et al.Nitrogen isotopes of released gas from rock crushing and implications to origins of molecular nitrogen in Lower Cambrian overmature shale gas in South China[J].Marine and Petroleum Geology,2024,163:106794. [7] 焦伟伟,汪生秀,程礼军,等.渝东南地区下寒武统页岩气高氮低烃成因[J].天然气地球科学,2017,28(12):1882-1890. JIAO Weiwei,WANG Shengxiu,CHENG Lijun,et al.The reason of high nitrogen content and low hydrocarbon content of shale gas from the Lower Cambrian Niutitang Formation in southeast Chongqing[J].Natural Gas Geoscience,2017,28(12):1882-1890. [8] 苏越,王伟明,李吉君,等.中国南方海相页岩气中氮气成因及其指示意义[J].石油与天然气地质,2019,40(6):1185-1196. SU Yue,WANG Weiming,LI Jijun,et al.Origin of nitrogen in marine shale gas in Southern China and its significance as an indicator[J].Oil & Gas Geology,2019,40(6):1185-1196. [9] 夏鹏,王甘露,曾凡桂,等.黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J].天然气地球科学,2018,29(9):1345-1355. XIA Peng,WANG Ganlu,ZENG Fangui,et al.The characteristics and mechanism of high-over matured nitrogen-rich shale gas of Niutitang Formation,northern Guizhou area[J].Natural Gas Geoscience,2018,29(9):1345-1355. [10] KOTARBA M J,NAGAO K,KARNKOWSKI P H.Origin of gaseous hydrocarbons,noble gases,carbon dioxide and nitrogen in Carboniferous and Permian strata of the distal part of the Polish Basin:geological and isotopic approach[J].Chemical Geology,2014,383:164-179. [11] LIU Yang,ZHANG Jinchuan,REN Jun,et al.Stable isotope geochemistry of the nitrogen-rich gas from Lower Cambrian shale in the Yangtze Gorges area,South China[J].Marine and Petroleum Geology,2016,77:693-702. [12] JURISCH S A,HEIM S,KROOSS B M,et al.Systematics of pyrolytic gas (N2,CH4)liberation from sedimentary rocks:contribution of organic and inorganic rock constituents[J].International Journal of Coal Geology,2012,89:95-107. [13] KROOSS B M,LITTKE R,MüLLER B,et al.Generation of nitrogen and methane from sedimentary organic matter:implications on the dynamics of natural gas accumulations[J].Chemical Geology,1995,126(3/4):291-318. [14] BOUDOU J P,ESPITALIÉ J.Molecular nitrogen from coal pyrolysis:kinetic modelling[J].Chemical Geology,1995,126(3/4):319-333. [15] 刘全有,刘文汇,KROOSS B M,等.天然气中氮的地球化学研究进展[J].天然气地球科学,2006,17(1):119-124. LIU Quanyou,LIU Wenhui,KROOSS B M,et al.Advances in nitrogen geochemistry of natural gas[J].Natural Gas Geoscience,2006,17(1):119-124. [16] LI Z X,BOGDANOVA S V,COLLINS A S,et al.Assembly,configuration,and break-up history of Rodinia:a synthesis[J].Precambrian Research,2008,160(1/2):179-210. [17] CAWOOD P A,STRACHAN R A,PISAREVSKY S A,et al.Linking collisional and accretionary orogens during Rodinia assembly and breakup:implications for models of supercontinent cycles[J].Earth and Planetary Science Letters,2016,449:118-126. [18] WANG Jian,LI Zhengxiang.History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J].Precambrian Research,2003,122(1/4):141-158. [19] ZHURAVLEV A Y,LIÑÁN E,VINTANED J A G,et al.New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain[J].Acta Palaeontologica Polonica,2012,57(1):205-224. [20] CHARVET J.The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:an overview[J].Journal of Asian Earth Sciences,2013,74:198-209. [21] XU Lingang,LEHMANN B,MAO Jingwen,et al.Mo isotope and trace element patterns of Lower Cambrian black shales in South China:multi-proxy constraints on the paleoenvironment[J].Chemical Geology,2012,318-319:45-59. [22] ZHU Maoyan,ZHANG Junming,YANG Aihua,et al.Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze platform:an integrated approach[J].Progress in Natural Science,2003,13(12):951-960. [23] STEINER M,LI Guoxiang,QIAN Yi,et al.Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze platform(China)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):67-99. [24] GAO Ping,LIU Guangdi,JIA Chengzao,et al.Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran-Early Cambrian:constraints from petrology and geochemistry[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,450:91-110. [25] WANG Dan,LING Hongfei,STRUCK U,et al.Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J].Nature Communications,2018,9(1):2575. [26] JIANG Ganqing,WANG Xinqiang,SHI Xiaoying,et al.The origin of decoupled carbonate and organic carbon isotope signatures in the Early Cambrian(ca.542-520 Ma)Yangtze platform[J].Earth and Planetary Science Letters,2012,317-318:96-110. [27] CAI Chunfang,XIANG Liangbin,YUAN Yuyang,et al.Marine C,S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze ocean[J].Journal of the Geological Society,2015,172(3):390-406. [28] ZHAO Xiangkuan,WANG Xinqiang,SHI Xiaoying,et al.Stepwise oxygenation of Early Cambrian ocean controls early metazoan diversification[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,504:86-103. [29] JIN Chengsheng,LI Chao,ALGEO T J,et al.A highly redox-heterogeneous ocean in South China during the Early Cambrian(~529-514 Ma):implications for biota-environment co-evolution[J].Earth and Planetary Science Letters,2016,441:38-51. [30] WANG Jianguo,CHEN Daizhao,YAN Detian,et al.Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J].Chemical Geology,2012,306-307:129-138. [31] GOLDBERG T,STRAUSS H,GUO Qingjun,et al.Reconstructing marine redox conditions for the Early Cambrian Yangtze platform:evidence from biogenic sulphur and organic carbon isotopes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):175-193. [32] LIU Kai,FENG Qinglai,SHEN Jun,et al.Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J].Palaeogeography, Palaeoclimatology,Palaeoecology,2018,491:1-9. [33] GUO Qingjun,STRAUSS H,LIU Congqiang,et al.Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian:evidence from the Yangtze platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):140-157. [34] 王丹.华南埃迪卡拉纪晚期—寒武纪早期海洋的氮循环与环境演化[D].南京:南京大学,2015. WANG Dan.Nitrogen cycle and marine environment during the Late Ediacaran-Early Cambrian in South China[D].Nanjing:Nanjing University,2015. [35] 韩美玲.黔北地区早寒武世古海洋环境演化及其对有机质富集的影响[D].北京:中国地质大学(北京),2021. HAN Meiling.The paleo-ocean environment evolution of Early Cambrian and its influence on organic matter enrichment model in northern Guizhou[D].Beijing:China University of Geosciences (Beijing),2021. [36] CHENG Meng,LI Chao,JIN Chengsheng,et al.Evidence for high organic carbon export to the Early Cambrian seafloor[J].Geochimica et Cosmochimica Acta,2020,287:125-140. [37] CHEN Yan,DIAMOND C W,STüEKEN E E,et al.Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze block across the Ediacaran-Cambrian transition[J].Geochimica et Cosmochimica Acta,2019,257:243-265. [38] ROBINSON R S,KIENAST M,ALBUQUERQUE A L,et al.A review of nitrogen isotopic alteration in marine sediments[J].Paleoceanography,2012,27(4):PA4203. [39] GRUBER N,GALLOWAY J N.An earth-system perspective of the global nitrogen cycle[J].Nature,2008,451(7176):293-296. [40] THOMAZO C,PAPINEAU D.Biogeochemical cycling of nitrogen on the early earth[J].Elements,2013,9(5):345-351. [41] PAYTAN A,MCLAUGHLIN K.The oceanic phosphorus cycle[J].Chemical Reviews,2007,107(2):563-576. [42] HEIM S,JURISCH S A,KROOSS B M,et al.Systematics of pyrolytic N2 and CH4 release from peat and coals of different thermal maturity[J].International Journal of Coal Geology,2012,89:84-94. [43] MINGRAM B,HOTH P,LüDERS V,et al.The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin[J].International Journal of Earth Sciences,2005,94(5/6):1010-1022. [44] KROOSS B M,FRIBERG L,GENSTERBLUM Y,et al.Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks[J].International Journal of Earth Sciences,2005,94(5/6):1023-1038. [45] WILLIAMS L B,FERRELL JR R E,CHINN E W,et al.Fixed-ammonium in clays associated with crude oils[J].Applied Geochemistry,1989,4(6):605-616. [46] STüEKEN E E,ZALOUMIS J,MEIXNEROVÁ J,et al.Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks[J].Geochimica et Cosmochimica Acta,2017,217:80-94. [47] COOPER J E,EVANS W S.Ammonium-nitrogen in Green River Formation oil shale[J].Science,1983,219(4584):492-493. [48] LINDGREEN H.Ammonium fixation during illite-smectite diagenesis in Upper Jurassic shale,North Sea[J].Clay Minerals,1994,29(4):527-537. [49] STüEKEN E E,BUICK R,GUY B M,et al.Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr[J].Nature,2015,520(7549):666-669. [50] BAXBY M,PATIENCE R L,BARTLE K D.The origin and diagenesis of sedimentary organic nitrogen[J].Journal of Petroleum Geology,1994,17(2):211-230. [51] STüEKEN E E,KIPP M A,KOEHLER M C,et al.The evolution of Earth’s biogeochemical nitrogen cycle[J].Earth-Science Reviews,2016,160:220-239. [52] MURRAY J W,FUCHSMAN C,KIRKPATRICK J,et al.Species and δ15N signatures of nitrogen transformations in the suboxic zone of the Black Sea[J].Oceanography,2005,18(2):36-47. [53] FULTON J M,ARTHUR M A,FREEMAN K H.Black Sea nitrogen cycling and the preservation of phytoplankton δ15N signals during the Holocene[J].Global Biogeochemical Cycles,2012,26(2):GB2030. [54] BOUDREAU B P,CANFIELD D E.A provisional diagenetic model for pH in anoxic porewaters:application to the FOAM site[J].Journal of Marine Research,1988,46(2):429-455. [55] 陈娟.古代细粒沉积物中不同赋存状态氮的同位素分布特征及分馏机理[D].北京:中国石油大学(北京),2021. CHEN Juan.Isotopic distribution characteristics and fractionation mechanism of nitrogen in different states of ancient fine sediments[D].Beijing: China University of Petroleum (Beijing),2021. [56] ADER M,THOMAZO C,SANSJOFRE P,et al.Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks:assumptions and perspectives[J].Chemical Geology,2016,429:93-110. [57] ZHANG Xinning,WARD B B,SIGMAN D M.Global nitrogen cycle:critical enzymes,organisms,and processes for nitrogen budgets and dynamics[J].Chemical Reviews,2020,120(12):5308-5351. [58] HAMMARLUND E U,GAINES R R,PROKOPENKO M G,et al.Early Cambrian oxygen minimum zone-like conditions at Chengjiang[J].Earth and Planetary Science Letters,2017,475:160-168. [59] CREMONESE L,SHIELDS-ZHOU G,STRUCK U,et al.Marine biogeochemical cycling during the Early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section,South China[J].Precambrian Research,2013,225:148-165. [60] ZHANG Junpeng,FAN Tailiang,ZHANG Yuandong,et al.Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation[J].Scientific Reports,2017,7(1):8550. [61] CREMONESE L,SHIELDS-ZHOU G A,STRUCK U,et al.Nitrogen and organic carbon isotope stratigraphy of the Yangtze platform during the Ediacaran-Cambrian transition in South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2014,398:165-186. [62] WANG Dan,STRUCK U,LING Hongfei,et al.Marine redox variations and nitrogen cycle of the Early Cambrian southern margin of the Yangtze platform,South China:evidence from nitrogen and organic carbon isotopes[J].Precambrian Research,2015,267:209-226. [63] LIU Yang,MAGNALL J M,GLEESON S A,et al.Spatio-temporal evolution of ocean redox and nitrogen cycling in the Early Cambrian Yangtze ocean[J].Chemical Geology,2020,554:119803. [64] KIKUMOTO R,TAHATA M,NISHIZAWA M,et al.Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges,South China[J].Gondwana Research,2014,25(3):1057-1069. [65] XU Dongtao,WANG Xinqiang,SHI Xiaoying,et al.Nitrogen cycle perturbations linked to metazoan diversification during the Early Cambrian[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,538:109392. [66] WEI Guangyi,LING Hongfei,LI Da,et al.Marine redox evolution in the Early Cambrian Yangtze shelf margin area:evidence from trace elements,nitrogen and sulphur isotopes[J].Geological Magazine,2017,154(6):1344-1359. [67] LIU Yang,STüEKEN E E,WANG Dongsheng,et al.A potential linkage between excess silicate-bound nitrogen and N2-rich natural gas in sedimentary reservoirs[J].Chemical Geology,2022,600:120864. [68] LUO Genming,ALGEO T J,ZHAN Renbin,et al.Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,448:339-348. [69] LIU Yu,LI Chao,FAN Junxuan,et al.Elevated marine productivity triggered nitrogen limitation on the Yangtze platform (South China)during the Ordovician-Silurian transition[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,554:109833. [70] CHEN Yan,CAI Chunfang,QIU Zhen,et al.Evolution of nitrogen cycling and primary productivity in the tropics during the Late Ordovician mass extinction[J].Chemical Geology,2021,559:119926. [71] CALVERT S E.Beware intercepts:interpreting compositional ratios in multi-component sediments and sedimentary rocks[J].Organic Geochemistry,2004,35(8):981-987. [72] XIANG Lei,SCHOEPFER S D,ZHANG Hua,et al.Evolution of primary producers and productivity across the Ediacaran-Cambrian transition[J].Precambrian Research,2018,313:68-77. [73] FENG Lianjun,LI Chao,HUANG Jing,et al.A sulfate control on marine mid-depth euxinia on the Early Cambrian (ca.529-521 Ma)Yangtze platform,South China[J].Precambrian Research,2014,246:123-133. [74] MINGRAM B,BRÄUER K.Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt[J].Geochimica et Cosmochimica Acta,2001,65(2):273-287. [75] GAI Haifeng,TIAN Hui,CHENG Peng,et al.Characteristics of molecular nitrogen generation from overmature black shales in South China:preliminary implications from pyrolysis experiments[J].Marine and Petroleum Geology,2020,120:104527. |