[1] 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发, 2020, 47(1):1-10. ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al.Types and resource potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development, 2020, 47(1):1-10. [2] 邹才能, 朱如凯, 董大忠, 等.页岩油气科技进步、发展战略及政策建议[J].石油学报, 2022, 43(12):1675-1686. ZOU Caineng, ZHU Rukai, DONG Dazhong, et al.Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J].Acta Petrolei Sinica, 2022, 43(12):1675-1686. [3] 金之钧, 朱如凯, 梁新平, 等.当前陆相页岩油勘探开发值得关注的几个问题[J].石油勘探与开发, 2021, 48(6):1276-1287. JIN Zhijun, ZHU Rukai, LIANG Xinping, et al.Several issues worthy of attention in current lacustrine shale oil exploration and development[J].Petroleum Exploration and Development, 2021, 48(6):1276-1287. [4] 国家市场监督管理总局, 国家标准化管理委员会.页岩油地质评价方法:GB/T 38718-2020[S].北京:中国标准出版社, 2020. State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China.Geological evaluating methods for shale oil:GB/T 38718-2020[S].Beijing:Standards Press of China, 2020. [5] 张金川, 林腊梅, 李玉喜, 等.页岩油分类与评价[J].地学前缘, 2012, 19(5):322-331. ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al.Classification and evaluation of shale oil[J].Earth Science Frontiers, 2012, 19(5):10:322-331. [6] 李宁, 冯周, 武宏亮, 等.中国陆相页岩油测井评价技术方法新进展[J].石油学报, 2023, 44(1):28-44. LI Ning, FENG Zhou, WU Hongliang, et al.New advances in methods and technologies for well logging evaluation of continental shale oil in China[J].Acta Petrolei Sinica, 2023, 44(1):28-44. [7] 张君峰, 周志, 宋腾, 等.中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示[J].石油学报, 2022, 43(12):1687-1701. ZHANG Junfeng, ZHOU Zhi, SONG Teng, et al.Comparison of exploration and development history, geological characteristics and exploitation conditions of shale gas in China and the United States and its enlightenment[J].Acta Petrolei Sinica, 2022, 43(12):1687-1701. [8] 张涛, 林承焰, 张宪国, 等.基于希尔伯特变换的测井曲线高分辨率处理方法[J].中国石油大学学报:自然科学版, 2012, 36(1):68-72. ZHANG Tao, LIN Chengyan, ZHANG Xianguo, et al.High resolution processing method for well logs based on Hilbert transformation[J].Journal of China University of Petroleum:Edition of Natural Science, 2012, 36(1):68-72. [9] 陈修, 徐守余, 李顺明, 等.基于支持向量机和主成分分析的辫状河储层夹层识别[J].中国石油大学学报:自然科学版, 2021, 45(4):22-31. CHEN Xiu, XU Shouyu, LI Shunming, et al.Identification of interlayers in braided river reservoir based on support vector machine and principal component analysis[J].Journal of China University of Petroleum:Edition of Natural Science, 2021, 45(4):22-31. [10] 谷宇峰, 张道勇, 鲍志东.测井资料PSO-XGBoost渗透率预测[J].石油地球物理勘探, 2021, 56(1):26-37. GU Yufeng, ZHANG Daoyong, BAO Zhidong.Permeability prediction using PSO-XGboost based on logging data[J].Oil Geophysical Prospecting, 2021, 56(1):26-37. [11] 刘合, 卢秋羽, 朱世佳, 等.典型聚类算法在区块抽油机井系统效率分析中的应用[J].石油学报, 2020, 41(12):1657-1664. LIU He, LU Qiuyu, ZHU Shijia, et al.Application of typical clustering algorithms in analysis of system efficiency of pumping wells in blocks[J]. Acta Petrolei Sinica, 2020, 41(12):1657-1664. [12] 周雪晴, 张占松, 朱林奇, 等.基于双向长短期记忆网络的流体高精度识别新方法[J].中国石油大学学报:自然科学版, 2021, 45(1):69-76. ZHOU Xueqing, ZHANG Zhansong, ZHU Linqi, et al.A new method for high-precision fluid identification in bidirectional long short-term memory network[J].Journal of China University of Petroleum:Edition of Natural Science, 2021, 45(1):69-76. [13] 李宁, 徐彬森, 武宏亮, 等.人工智能在测井地层评价中的应用现状及前景[J].石油学报, 2021, 42(4):508-522. LI Ning, XU Binsen, WU Hongliang, et al.Application status and prospects of artificial intelligence in well logging and formation evaluation[J].Acta Petrolei Sinica, 2021, 42(4):508-522. [14] 金之钧, 王冠平, 刘光祥, 等.中国陆相页岩油研究进展与关键科学问题[J].石油学报, 2021, 42(7):821-835. JIN Zhijun, WANG Guanping, LIU Guangxiang, et al.Research progress and key scientific issues of continental shale oil in China[J].Acta Petrolei Sinica, 2021, 42(7):821-835. [15] 曹婷婷, 蒋启贵, 钱门辉, 等.页岩含油量热解分析关键技术[J].石油学报, 2023, 44(2):329-338. CAO Tingting, JIANG Qigui, QIAN Menhui, et al.Key technologies for pyrolysis analysis of shale oil content[J].Acta Petrolei Sinica, 2023, 44(2):329-338. [16] FENG Zhongkai, NIU Wenjing, ZHANG Rui, et al.Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization[J].Journal of Hydrology, 2019, 576:229-238. [17] BUI D T, NGO P T T, PHAM T D, et al.A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping[J].CATENA, 2019, 179:184-196. [18] DONG Wei, ZHANG Shuqing, JIANG Anqi, et al.Intelligent fault diagnosis of rolling bearings based on refined composite multi-scale dispersion q-complexity and adaptive whale algorithm-extreme learning machine[J].Measurement, 2021, 176:108977. [19] 刘傲, 周正.基于粒子群优化极限学习机的雷达识别方法[J].兵工自动化, 2021, 40(9):1-5. LIU Ao, ZHOU Zheng.Radar recognition method based on particle swarm optimization and extreme learning machine[J].Ordnance Industry Automation, 2021, 40(9):1-5. [20] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2):513-529. [21] HUANG Guangbin, ZHU Qinyu, SIEW C K.Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks.Budapest:IEEE, 2004:985-990. [22] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks.Perth:IEEE, 1995:1942-1948. [23] CAO Yulian, ZHANG Han, LI Wenfeng, et al.Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions[J].IEEE Transactions on Evolutionary Computation, 2019, 23(4):718-731. [24] 杨思通, 孙建孟, 李玉泉, 等.沃尔什函数薄层评价技术在乌南油田中的应用[J].石油物探, 2005, 44(2):150-153. YANG Sitong, SUN Jianmeng, LI Yuquan, et al.The application of thin bed evaluation by walsh function in Wunan oilfield[J].Geophysical Prospecting for Petroleum, 2005, 44(2):150-153. |