[1] 门相勇, 娄钰, 王一兵, 等.中国煤层气产业"十三五"以来发展成效与建议[J].天然气工业, 2022, 42(6):173-178. MEN Xiangyong, LOU Yu, WANG Yibing, et al.Development achievements of China's CBM industry since the 13th Five-Year Plan and suggestions[J].Natural Gas Industry, 2022, 42(6):173-178. [2] 徐凤银, 王勃, 赵欣, 等."双碳"目标下推进中国煤层气业务高质量发展的思考与建议[J].中国石油勘探, 2021, 26(3):9-18. XU Fengyin, WANG Bo, ZHAO Xin, et al.Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of "double carbon"[J].China Petroleum Exploration, 2021, 26(3):9-18. [3] 秦勇, 申建, 史锐.中国煤系气大产业建设战略价值与战略选择[J].煤炭学报, 2022, 47(1):371-387. QIN Yong, SHEN Jian, SHI Rui.Strategic value and choice on construction of large CMG industry in China[J].Journal of China Coal Society, 2022, 47(1):371-387. [4] 李松, 汤达祯, 许浩, 等.应力条件制约下不同埋深煤储层物性差异演化[J].石油学报, 2015, 36(增刊1):68-75. LI Song, TANG Dazhen, XU Hao, et al.Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J].Acta Petrolei Sinica, 2015, 36(S1):68-75. [5] 秦勇, 申建.论深部煤层气基本地质问题[J].石油学报, 2016, 37(1):125-136. QIN Yong, SHEN Jian.On the fundamental issues of deep coalbed methane geology[J].Acta Petrolei Sinica, 2016, 37(1):125-136. [6] 秦勇, 申建, 王宝文, 等.深部煤层气成藏效应及其耦合关系[J].石油学报, 2012, 33(1):48-54. QIN Yong, SHEN Jian, WANG Baowen, et al.Accumulation effects and coupling relationship of deep coalbed methane[J].Acta Petrolei Sinica, 2012, 33(1):48-54. [7] 吴双.深部煤层气储层储渗机理及开发特征研究[D].北京:中国地质大学(北京), 2018. WU Shuang.Storage-seepage mechanism and development features of deep coalbed methane reservoir[D].Beijing:China University of Geosciences (Beijing), 2018. [8] 孟召平, 田永东, 李国富.沁水盆地南部煤储层渗透性与地应力之间关系和控制机理[J].自然科学进展, 2009, 19(10):1142-1148. MENG Zhaoping, TIAN Yongdong, LI Guofu.Relationship and control mechanism between permeability and in-situ stress of coal reservoirs in the southern Qinshui Basin[J].Progress in Natural Science, 2009, 19(10):1142-1148. [9] 李玉宏, 李文厚, 张倩, 等.鄂尔多斯盆地及周缘沉积相图册[M].北京:地质出版社, 2020. LI Yuhong, LI Wenhou, ZHANG Qian, et al.Atlas of sedimentary facies of the Ordos Basin and its periphery[M].Beijing:Geological Publishing House, 2020. [10] 王勃.沁水盆地煤层气富集高产规律及有利区块预测评价[D].徐州:中国矿业大学, 2013. WANG Bo.Coalbed methane enrichment and high-production rule & prospective area prediction in Qinshui Basin[D].Xuzhou:China University of Mining and Technology, 2013. [11] 国家质量技术监督局.中国煤层煤分类:GB/T 17607-1998[S].北京:中国标准出版社, 1999. The State Bureau of Quality and Technical Supervision.Chinese classification of in seam coals:GB/T 17607-1998[S].Beijing:Standards Press of China, 1999. [12] 国家质量技术监督局.烟煤的宏观煤岩类型分类:GB/T 18023-2000[S].北 京:中国标准出版社, 2000. The State Bureau of Quality and Technical Supervision.Classification of macrolithotype for bituminous coal:GB/T 18023-2000[S].Beijing:Standards Press of China, 2000. [13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤体结构分类:GB/T 30050-2013[S].北京:中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Classification of coal-body structure:GB/T 30050-2013[S].Beijing:Standards Press of China, 2014. [14] 康永尚, 孙良忠, 张兵, 等.中国煤储层渗透率分级方案探讨[J].煤炭学报, 2017, 42(S1):186-194. KANG Yongshang, SUN Liangzhong, ZHANG Bing, et al.Discussion on classification of coalbed reservoir permeability in China[J].Journal of China Coal Society, 2017, 42(S1):186-194. [15] 杨秀春, 宋柏荣, 陈国辉, 等.大宁-吉县区块深层煤岩多尺度孔缝结构特征[J].特种油气藏, 2022, 29(5):94-100. YANG Xiuchun, SONG Bairong, CHEN Guohui, et al.Characteristics of multi-scale pore-fracture structure of deep coal rocks in the Daning-Jixian block[J].Special Oil & Gas Reservoirs, 2022, 29(5):94-100. [16] KARIMPOULI S, TAHMASEBI P, RAMANDI H L.A review of experimental and numerical modeling of digital coalbed methane:imaging, segmentation, fracture modeling and permeability prediction[J].International Journal of Coal Geology, 2020, 228:103552. [17] JING Zhenhua, GAO Shuai, RODRIGUES S, et al.Influence of porosity on the reactivity of inertinite and vitrinite toward sodium hypochlorite:implications for enhancing coal seam gas development[J].International Journal of Coal Geology, 2021, 237:103709. [18] 吴凡, 孙黎娟, 何江.孔隙度、渗透率与净覆压的规律研究和应用[J].西南石油学院学报, 1999, 21(4):23-25. WU Fan, SUN Lijuan, HE Jiang.The research and application of permeability, porosity and net overburden pressure laws[J].Journal of Southwest Petroleum Institute, 1999, 21(4):23-25. [19] KHALIL R, EMADI H.An experimental investigation of cryogenic treatments effects on porosity, permeability, and mechanical properties of Marcellus downhole core samples[J].Journal of Natural Gas Science and Engineering, 2020, 81:103422. [20] 杨泽皓, 董明哲, 宫厚健, 等.测量页岩径向渗透率和孔隙度的新方法[J].石油学报, 2015, 36(4):482-489. YANG Zehao, DONG Mingzhe, GONG Houjian, et al.A new method to measure radial permeability and porosity of shale[J].Acta Petrolei Sinica, 2015, 36(4):482-489. [21] 郭德勇, 韩德馨, 冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究[J].煤田地质与勘探, 1998, 26(4):32-35. GUO Deyong, HAN Dexin, FENG Zhiliang.Experimental study on the porosity and permeability of disturbed coal under confined pressure[J].Coal Geology & Exploration, 1998, 26(4):32-35. [22] 汤达祯, 王生维, 金振奎, 等.煤储层物性控制机理及有利储层预测方法[M].北京:科学出版社, 2010. TANG Dazhen, WANG Shengwei, JIN Zhenkui, et al.Physical property control mechanism of coal reservoir and favorable reservoir prediction method[M].Beijing:Science Press, 2010. [23] GAN H, NANDI S P, WALKER JR P L.Nature of the porosity in American coals[J].Fuel, 1972, 51(4):272-277. [24] SING K S W, EVERETT D H, HAUL R A W, et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J].Pure and Applied Chemistry, 1985, 57(4):603-619. [25] 谢克昌.煤的结构与反应性[M].北京:科学出版社, 2002. XIE Kechang.Coal structure and its reactivity[M].Beijing:Science Press, 2002. [26] 王阳.上扬子区龙马溪组页岩微孔缝结构演化与页岩气赋存[D].徐州:中国矿业大学, 2017. WANG Yang.Nanoscale pore structure evolution and shale gas occurrence of Longmaxi Formation in Upper Yangtze area[D].Xuzhou:China University of Mining and Technology, 2017. [27] 冯光俊.上扬子区下寒武统页岩高温高压甲烷吸附与页岩气赋存[D].徐州:中国矿业大学, 2020. FENG Guangjun.High-temperature high-pressure methane adsorption and shale gas occurrence in Lower Cambrian shale, Upper Yangtze area[D].Xuzhou:China University of Mining and Technology, 2020. [28] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报, 2001, 26(1):40-44. ZHANG Hui.Genetical type of proes in coal reservoir and its research significance[J].Journal of China Coal Society, 2001, 26(1):40-44. [29] 郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报, 1987, 12(4):51-56. HAO Qi.On morphological character and origin of micropores in coal[J].Journal of China Coal Society, 1987, 12(4):51-56. [30] 蒋裕强, 董大忠, 漆麟, 等.页岩气储层的基本特征及其评价[J].天然气工业, 2010, 30(10):7-12. JIANG Yuqiang, DONG Dazhong, QI Lin, et al.Basic features and evaluation of shale gas reservoirs[J].Natural Gas Industry, 2010, 30(10):7-12. [31] 邹才能, 董大忠, 王玉满, 等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发, 2016, 43(2):166-178. ZOU Caineng, DONG Dazhong, WANG Yuman, et al.Shale gas in China:characteristics, challenges and prospects (II)[J].Petroleum Exploration and Development, 2016, 43(2):166-178. [32] 郑贵强, 杨德方, 周显亮.沁水盆地深、浅煤储层物性差异对比研究[J].煤炭技术, 2018, 37(3):108-110. ZHENG Guiqiang, YANG Defang, ZHOU Xianliang.Comparative study on reservoir properties of deep and shallow coal seams in Qinshui Basin[J].Coal Technology, 2018, 37(3):108-110. [33] 陈磊.陆相页岩孔隙结构及其对页岩气赋存的控制——以川东北下侏罗统页岩为例[D].北京:中国石油大学(北京), 2019. CHEN Lei.Pore structure and its control on shale gas occurrence of continental shale:a case study of Lower Jurassic shale in the northeastern Sichuan Basin[D].Beijing:China University of Petroleum (Beijing), 2019. [34] 聂海宽, 李沛, 党伟, 等.四川盆地及周缘奥陶系-志留系深层页岩气富集特征与勘探方向[J].石油勘探与开发, 2022, 49(4):648-659. NIE Haikuan, LI Pei, DANG Wei, et al.Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China[J].Petroleum Exploration and Development, 2022, 49(4):648-659. [35] 管全中, 董大忠, 张华玲, 等.基于改进的岩石物理模型表征页岩天然裂缝特征[J].天然气工业, 2021, 41(2):56-64. GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al.Characterizing the characteristics of natural fractures in shale based on the modified petrophysical model[J].Natural Gas Industry, 2021, 41(2):56-64. [36] 郭旭升, 腾格尔, 魏祥峰, 等.四川盆地深层海相页岩气赋存机理与勘探潜力[J].石油学报, 2022, 43(4):453-468. GUO Xusheng, TENGER B, WEI Xiangfeng, et al.Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J].Acta Petrolei Sinica, 2022, 43(4):453-468. [37] 潘仁芳, 龚琴, 鄢杰, 等.页岩气藏"甜点"构成要素及富气特征分析——以四川盆地长宁地区龙马溪组为例[J].天然气工业, 2016, 36(3):7-13. PAN Renfang, GONG Qin, YAN Jie, et al.Elements and gas enrichment laws of sweet spots in shale gas reservoir:a case study of the Longmaxi Fm in Changning block, Sichuan Basin[J].Natural Gas Industry, 2016, 36(3):7-13. [38] 戴方尧.川东-湘西地区龙马溪组与牛蹄塘组页岩孔隙与页岩气赋存机理研究[D].武汉:中国地质大学, 2018. DAI Fangyao.The study of pores characteristics and shale gas occurrence of Longmaxi and Niutitang Formation in East of Sichuan and West of Hunan area[D].Wuhan:China University of Geosciences, 2018. [39] 汪洋.川南地区五峰-龙马溪组页岩成岩成烃演化及对页岩气赋存状态的影响[D].北京:中国石油大学(北京), 2020. WANG Yang.Hydrocarbon generation and diagenetic evolution of shale and their influences on gas occurrence in Wufeng-Longmaxi Formation, southern Sichuan Basin[D].Beijing:China University of Petroleum (Beijing), 2020. [40] 张松航.鄂尔多斯盆地东缘煤层气储层物性研究[D].北京:中国地质大学(北京), 2008. ZHANG Songhang.Study on coal reservoir physical properties in eastern margin of Ordos Basin[D].Beijing:China University of Geosciences (Beijing), 2008. [41] 王琳琳.煤储层节理发育非均质性评价的构造动力学方法及其应用——以鄂东临汾地区为例[D].徐州:中国矿业大学, 2014. WANG Linlin.Evaluation of joint development heterogeneity of coal reservoir based on structural dynamics and its application:an example from Linfen, the eastern margin of the Ordos Basin[D].Xuzhou:China University of Mining and Technology, 2014. [42] 孟召平, 陆鹏庆, 贺小黑.沉积结构面及其对岩体力学性质的影响[J].煤田地质与勘探, 2009, 37(1):33-37. MENG Zhaoping, LU Pengqing, HE Xiaohei.Depositinonal structure planes and their influence on the mechanical properties of sedimentary rock mass[J].Coal Geology & Exploration, 2009, 37(1):33-37. |