Acta Petrolei Sinica ›› 2024, Vol. 45 ›› Issue (8): 1296-1308.DOI: 10.7623/syxb202408011
• REVIEW • Previous Articles
Liu He1,2, Ren Yili1,2,3, Li Xin1,2,3, Zhu Rukai2, Hu Yanxu4, Liu Xi2,3, Su Qianxiao2,3, Wu Jianping4, Li Bin4
Received:
2024-01-03
Revised:
2024-04-24
Published:
2024-09-04
刘合1,2, 任义丽1,2,3, 李欣1,2,3, 朱如凯2, 胡延旭4, 刘茜2,3, 苏乾潇2,3, 吴健平4, 李彬4
通讯作者:
任义丽,女,1987年3月生,2023年获中国石油勘探开发研究院博士学位,现为中国石油勘探开发研究院高级工程师,主要从事计算机视觉、深度学习、大模型等技术在油气地质中的应用研究。Email:renyili@petrochina.com.cn
作者简介:
刘合,男,1961年3月生,2002年获哈尔滨工程大学博士学位,现为中国工程院院士、中国石油勘探开发研究院副总工程师,主要从事低渗透油气藏增产改造、机采系统提高系统效率、分层注水和井筒工程控制技术、油气人工智能等研究。Email:liuhe@petrchina.com.cn
基金资助:
CLC Number:
Liu He, Ren Yili, Li Xin, Zhu Rukai, Hu Yanxu, Liu Xi, Su Qianxiao, Wu Jianping, Li Bin. Connotation and prospect of intelligent recognition technology for cores[J]. Acta Petrolei Sinica, 2024, 45(8): 1296-1308.
刘合, 任义丽, 李欣, 朱如凯, 胡延旭, 刘茜, 苏乾潇, 吴健平, 李彬. 岩心智能识别技术内涵与展望[J]. 石油学报, 2024, 45(8): 1296-1308.
Add to citation manager EndNote|Ris|BibTeX
[1] 王宗礼, 娄钰, 潘继平.中国油气资源勘探开发现状与发展前景[J].国际石油经济, 2017, 25(3):1-6. WANG Zongli, LOU Yu, PAN Jiping.China’s oil & gas resources exploration and development and its prospect[J].International Petroleum Economics, 2017, 25(3):1-6. [2] 白林, 姚钰, 李双涛, 等.基于深度学习特征提取的岩石图像矿物成分分析[J].中国矿业, 2018, 27(7):178-182. BAI Lin, YAO Yu, LI Shuangtao, et al.Mineral composition analysis of rock image based on deep learning feature extraction[J].China Mining Magazine, 2018, 27(7):178-182. [3] 冯雅兴, 龚希, 徐永洋, 等.基于岩石新鲜面图像与孪生卷积神经网络的岩性识别方法研究[J].地理与地理信息科学, 2019, 35(5): 89-94. FENG Yaxing, GONG Xi, XU Yongyang, et al.Lithology recognition based on fresh rock images and twins convolution neural network[J]. Geography and Geo-Information Science, 2019, 35(5):89-94. [4] FAN Guangpeng, CHEN Feixiang, CHEN Danyu, et al.Recognizing multiple types of rocks quickly and accurately based on lightweight CNNs model[J].IEEE Access, 2020, 8:55269-55278. [5] 熊越晗, 刘东燕, 刘东升, 等.基于岩样细观图像深度学习的岩性自动分类方法[J].吉林大学学报(地球科学版), 2021, 51(5):1597-1604. XIONG Yuehan, LIU Dongyan, LIU Dongsheng, et al.Automatic lithology classification method based on deep learning of rock sample meso-image[J].Journal of Jilin University (Earth Science Edition), 2021, 51(5):1597-1604. [6] LI Na, HAO Huizhen, GU Qing, et al.A transfer learning method for automatic identification of sandstone microscopic images[J].Computers & Geosciences, 2017, 103:111-121. [7] 雷明锋, 张运波, 王卫东, 等.岩石岩性Mask R-CNN智能识别方法与应用研究[J].铁道科学与工程学报, 2022, 19(11):3372-3382. LEI Mingfeng, ZHANG Yunbo, WANG Weidong, et al.Investigation and application on lithology intelligent recognition method based on mask R-CNN[J].Journal of Railway Science and Engineering, 2022, 19(11):3372-3382. [8] 彭伟航, 白林, 商世为, 等.基于改进InceptionV3模型的常见矿物智能识别[J].地质通报, 2019, 38(12):2059-2066. PENG Weihang, BAI Lin, SHANG Shiwei, et al.Common mineral intelligent recognition based on improved InceptionV3[J].Geological Bulletin of China, 2019, 38(12):2059-2066. [9] 张中亚.砂岩薄片图像分割与识别研究[D].合肥:中国科学技术大学, 2020. ZHANG Zhongya.Research on image segmentation and recognition of sandstone thin section[D].Hefei:University of Science and Technology of China, 2020. [10] 郭艳军, 周哲, 林贺洵, 等.基于深度学习的智能矿物识别方法研究[J].地学前缘, 2020, 27(5):39-47. GUO Yanjun, ZHOU Zhe, LIN Hexun, et al.The mineral intelligence identification method based on deep learning algorithms[J].Earth Science Frontiers, 2020, 27(5):39-47. [11] BORGES H P, DE AGUIAR M S.Mineral classification using machine learning and images of microscopic rock thin section[C]//18th Mexican International Conference on Artificial Intelligence:Advances in Soft Computing.Xalapa:Springer, 2019:63-76. [12] MAITRE J, BOUCHARD K, BÉDARD L P.Mineral grains recognition using computer vision and machine learning[J].Computers & Geosciences, 2019, 130:84-93. [13] 黄辉红.基于深度学习的泥岩岩性与风化程度检测[D].成都:电子科技大学, 2022. HUANG Huihong.Detection of mudstone lithology and weathering degree based on deep learning[D].Chengdu:University of Electronic Science and Technology of China, 2022. [14] 严良平, 彭泽豹, 葛家晟, 等.基于深度学习的岩石风化度分类方法:114048803A[P].2022-02-15. YAN Liangping, PENG Zebao, GE Jiasheng, et al.Classification method of rock weathering degree based on deep learning:114048803A[P].2022-02-15. [15] CHEN Zhuoheng, LIU Xiaojun, YANG Jijin, et al.Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in western Canada Sedimentary Basin[J].Computers & Geosciences, 2020, 138:104450. [16] WANG Yingda, SHABANINEJAD M, ARMSTRONG R T, et al.Deep neural networks for improving physical accuracy of 2D and 3D multi-mineral segmentation of rock micro-CT images[J].Applied Soft Computing, 2021, 104:107185. [17] LI Chunxiao, WANG Dongmei, KONG Lingyun.Application of machine learning techniques in mineral classification for scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) images[J].Journal of Petroleum Science and Engineering, 2021, 200:108178. [18] LI Bingke, NIE Xin, CAI Jianchao, et al.U-Net model for multi-component digital rock modeling of shales based on CT and QEMSCAN images[J].Journal of Petroleum Science and Engineering, 2022, 216:110734. [19] 司晨冉, 王仁超, 邸阔, 等.一种基于Mask R-CNN和分水岭算法的岩石颗粒图像分割方法[J].水电能源科学, 2020, 38(11):129-132. SI Chenran, WANG Renchao, DI Kuo, et al.A rock particle image segmentation method based on mask R-CNN and watershed algorithm[J]. Water Resources and Power, 2020, 38(11):129-132. [20] 王伟, 李擎, 张德政, 等.基于深度学习的矿石图像处理研究综述[J].工程科学学报, 2023, 45(4):621-631. WANG Wei, LI Qing, ZHANG Dezheng, et al.A survey of ore image processing based on deep learning[J].Chinese Journal of Engineering, 2023, 45(4):621-631. [21] 王浩, 熊淑华, 何海波, 等.基于改进UNet3+的岩心图像颗粒提取算法[J].计算机系统应用, 2024, 33(1):199-205. WANG Hao, XIONG Shuhua, HE Haibo, et al.Core image particle extraction algorithm based on improved UNet3+[J].Computer Systems & Applications, 2024, 33(1):199-205. [22] 薛章涛, 张航, 潘少伟, 等.基于改进U-Net的岩心铸体薄片图像分割研究[J].甘肃科学学报, 2023, 35(4):9-14. XUE Zhangtao, ZHANG Hang, PAN Shaowei, et al.Study on image segmentation of core founding slice based on improved U-Net[J]. Journal of Gansu Sciences, 2023, 35(4):9-14. [23] TANG Kunning, WANG Yingda, MOSTAGHIMI P, et al.Deep convolutional neural network for 3D mineral identification and liberation analysis[J].Minerals Engineering, 2022, 183:107592. [24] 陈雁, 李祉呈, 程超, 等.FLU-net:用于表征页岩储层微观孔隙的深度全卷积网络[J].海洋地质前沿, 2021, 37(8):34-43. CHEN Yan, LI Zhicheng, CHENG Chao, et al.FLU-net:a deep fully convolutional neural network for shale reservoir micro-pore characterization [J].Marine Geology Frontiers, 2021, 37(8):34-43. [25] JOBE T D, VITAL-BRAZIL E, KHAIT M.Geological feature prediction using image-based machine learning[J].Petrophysics, 2018, 59(6):750-760. [26] DUARTE-CORONADO D, TELLEZ-RODRIGUEZ J, PIRES DE LIMA R, et al.Deep convolutional neural networks as an estimator of porosity in thin-section images for unconventional reservoirs[C]//SEG Technical Program Expanded Abstracts 2019.Texas:Society of Exploration Geophysicists, 2019:3181-3184. [27] MISBAHUDDIN M.Estimating petrophysical properties of shale rock using conventional neural networks CNN[R].SPE 204272, 2020. [28] FLORES A G R, FISHER Q, LORINCZI P.Convolutional neural networks for the classification of the microstructure of tight sandstone[C]//International Petroleum Technology Conference.Texas:IPTC, 2021:IPTC-21208-MS. [29] ALQAHTANI N, ARMSTRONG R T, MOSTAGHIMI P.Deep learning convolutional neural networks to predict porous media properties[R].SPE 191906, 2018. [30] ANTLE R.Automated core fracture characterization by computer vision and image analytics of CT images[R].SPE 195181, 2019. [31] KIRILLOV A, MINTUN E, RAVI N, et al.Segment anything[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV).Paris:IEEE, 2023:3992-4003. [32] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Montreal:NIPS, 2014:2672-2680. [33] MOSSER L, DUBRULE O, BLUNT M J.Reconstruction of three-dimensional porous media using generative adversarial neural networks[J]. Physical Review E, 2017, 96(4):043309. [34] MOSSER L, DUBRULE O, BLUNT M J.Stochastic reconstruction of an oolitic limestone by generative adversarial networks[J].Transport in Porous Media, 2018, 125(1):81-103. [35] LIU X F, PENG J H, ZHANG J X, et al.Research on characterization methods of efflorescence on cement-based decorative mortar[J].IOP Conference Series:Materials Science and Engineering, 2019, 504:012007. [36] 杨永飞, 刘夫贵, 姚军, 等.基于生成对抗网络的页岩三维数字岩芯构建[J].西南石油大学学报(自然科学版), 2021, 43(5):73-83. YANG Yongfei, LIU Fugui, YAO Jun, et al.Reconstruction of 3D shale digital rock based on generative adversarial network[J].Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5):73-83. [37] ZHAO Jiuyu, WANG Fuyong, CAI Jianchao.3D tight sandstone digital rock reconstruction with deep learning[J].Journal of Petroleum Science and Engineering, 2021, 207:109020. [38] FENG Junxi, TENG Qizhi, LI Bing, et al.An end-to-end three-dimensional reconstruction framework of porous media from a single two-dimensional image based on deep learning[J].Computer Methods in Applied Mechanics and Engineering, 2020, 368:113043. [39] VOLKHONSKIY D, MURAVLEVA E, SUDAKOV O, et al.Reconstruction of 3D porous media from 2D slices[R/OL].(2021-08-06).https://arxiv.org/pdf/1901.10233. [40] ZHENG Qiang, ZHANG Dongxiao.RockGPT:reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning[J].Computational Geosciences, 2022, 26(3):677-696. [41] DONG Chao, LOY C C, HE Kaiming, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [42] WANG Yingda, ARMSTRONG R T, MOSTAGHIMI P.Enhancing resolution of digital rock images with super resolution convolutional neural networks[J].Journal of Petroleum Science and Engineering, 2019, 182:106261. [43] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE, 2017:105-114. [44] 朱联祥, 郑逸.自注意力SRGAN在岩石CT图像超分辨中的应用研究[J].西安石油大学学报(自然科学版), 2022, 37(2):131-137. ZHU Lianxiang, ZHENG Yi.Applications of self-attention SRGAN in super resolution reconstruction of rock CT image[J].Journal of Xi’an Shiyou University (Natural Science Edition), 2022, 37(2):131-137. [45] CHEN Honggang, HE Xiaohai, TENG Qizhi, et al.Super-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networks[J].Physical Review E, 2020, 101(2):023305. [46] 姜黎明, 刘宁静, 孙建孟, 等.利用CT图像与压汞核磁共振构建高精度三维数字岩心[J].测井技术, 2016, 40(4):404-407. JIANG Liming, LIU Ningjing, SUN Jianmeng, et al.Higher precision 3D digital core constructed by CT scanning image with mercury penetration and NMR[J].Well Logging Technology, 2016, 40(4):404-407. [47] WANG Yu, PU Jie, WANG Lihua, et al.Characterization of typical 3D pore networks of Jiulaodong Formation shale using Nano-transmission X-ray microscopy[J].Fuel, 2016, 170:84-91. [48] 崔利凯, 孙建孟, 闫伟超, 等.基于多分辨率图像融合的多尺度多组分数字岩心构建[J].吉林大学学报(地球科学版), 2017, 47(6): 1904-1912. CUI Likai, SUN Jianmeng, YAN Weichao, et al.Construction of multi-scale and -component digital cores based on fusion of different resolution core images[J].Journal of Jilin University (Earth Science Edition), 2017, 47(6):1904-1912. [49] 李俊键, 成宝洋, 刘仁静, 等.基于数字岩心的孔隙尺度砂砾岩水敏微观机理[J].石油学报, 2019, 40(5):594-603. LI Junjian, CHENG Baoyang, LIU Renjing, et al.Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core[J].Acta Petrolei Sinica, 2019, 40(5):594-603. [50] 陶金雨, 张昌民, 郭旭光, 等.磨圆度定量表征在扇三角洲沉积微相判别中的应用——以玛湖凹陷百口泉组砾岩为例[J].沉积学报, 2020, 38(5):956-965. TAO Jinyu, ZHANG Changmin, GUO Xuguang, et al.Application of quantitative roundness characterization to identify sedimentary microfacies in fan delta deposits:a case study of conglomerates in the Baikouquan Formation, Mahu sag[J].Acta Sedimentologica Sinica, 2020, 38(5):956-965. [51] 陶金雨, 张昌民, 朱锐.基于岩芯图像的砾石磨圆度测量方法:105953766A[P].2016-09-21. TAO Jinyu, ZHANG Changmin, ZHU Rui.Gravel grinding roundness measurement method based on core images:105953766A[P].2016-09-21. [52] 双棋.砾石磨圆度定量方法探究[J].资源信息与工程, 2019, 34(1) :103-105. SHUANG Qi.Exploration on the quantitative method of gravel grinding roundness[J].Resource Information and Engineering, 2019, 34(1):103-105. [53] 任义丽.基于深度学习的油气储层薄片智能鉴定方法[D].北京:中国石油勘探开发研究院, 2023. REN Yili.Rock thin-section of reservoir analysis and identification based on artificial intelligent technique[D].Beijing:PetroChina Research Institute of Petroleum Exploration & Development, 2023. [54] WU Yuqi, TAHMASEBI P, LIN Chengyan, et al.A comprehensive investigation of the effects of organic-matter pores on shale properties:a multicomponent and multiscale modeling[J].Journal of Natural Gas Science and Engineering, 2020, 81:103425. [55] 吴玉其.低渗透储层数字岩心分析及微观剩余油研究[D].青岛:中国石油大学(华东), 2021. WU Yuqi.Digital core analysis of low-permeability reservoirs and research on microscopic remaining oil[D].Qingdao:China University of Petroleum (East China), 2021. |
[1] | Ji Bingyu, Zhang Wenbiao, He Yingfu, Duan Taizhong, Liu He. Connotation and development trends of integration between geological reservoir modeling and numerical reservoir simulation [J]. Acta Petrolei Sinica, 2024, 45(7): 1152-1162. |
[2] | Hui Shasha, Pang Xiongqi, Chen Zhuoheng, Wang Chenxi, Shi Kanyuan, Hu Tao, Hu Yao, Li Min, Mei Shuxing, Li Maowen. Quantitative characterization of the contribution of pore types to pore space of marine shale in Sichuan Basin [J]. Acta Petrolei Sinica, 2024, 45(3): 531-547. |
[3] | Liu He, Li Yanchun, Jia Deli, Wang Suling, Qiao Meixia, Qu Ruyi, Wen Pengyun, Ren Zhihui. Application status and prospects of artificial intelligence in the refinement of waterflooding development program [J]. Acta Petrolei Sinica, 2023, 44(9): 1574-1586. |
[4] | Chen Yilin, Qin Yong, Zhang Bo, Yang Tianyu, Liu Jing, Wang Lanhua, Hong Yong. Differential influence of sample particle size on the pore structure of coal with different metamorphic degree [J]. Acta Petrolei Sinica, 2023, 44(8): 1313-1332. |
[5] | Ding Qian, Gan Lideng, Wei Lele, Zhang Yusheng, Yang Hao, Jiang Xiaoyu, Wang Yaojun. The dual pore structure factors and its application in seismic prediction of reservoir permeability [J]. Acta Petrolei Sinica, 2023, 44(2): 339-347. |
[6] | Liu Xiwu, Wang Xinyu, Liu Yuwei, Zhang Jinqiang, Liu Jiong, Liu Qian. Current status and development direction of seismic prospecting technology for continental shale oil in China [J]. Acta Petrolei Sinica, 2023, 44(12): 2270-2285. |
[7] | Tang Shuling, Tang Dazhen, Yang Jiaosheng, Deng Ze, Li Song, Chen Shida, Feng Peng, Huang Chen, Li Zhanwei. Pore structure characteristics and gas storage potential of deep coal reservoirs in Daning-Jixian block of Ordos Basin [J]. Acta Petrolei Sinica, 2023, 44(11): 1854-1866,1902. |
[8] | Fang Zheng, Pu Xiugang, Chen Shiyue, Yan Jihua, Chen Xingran, Cui Qimeng. Effect of shale high frequency sequence in deep water areas of continental lacustrine basin on reservoir development: a case study of the Member 2 of Kongdian Formation shale of Cangdong sag in Bohai Bay Basin [J]. Acta Petrolei Sinica, 2023, 44(10): 1663-1682. |
[9] | Jin Guowen, Wang Tangyu, Liu Zhonghua, Xie Ranhong, Shao Liang, Li Boyu. Classification and productivity prediction of glutenite reservoirs based on NMR logging [J]. Acta Petrolei Sinica, 2022, 43(5): 648-657. |
[10] | Liu Wenling, Han Dakuang. Digital twin system of oil and gas reservoirs: a new direction for smart oil and gas field construction [J]. Acta Petrolei Sinica, 2022, 43(10): 1450-1461. |
[11] | Sun Jinsheng, Liu Fan, Cheng Rongchao, Feng Jie, Hao Huijun, Wang Ren, Bai Yingrui, Liu Qinzheng. Research progress and prospects of machine learning in lost circulation control [J]. Acta Petrolei Sinica, 2022, 43(1): 91-100. |
[12] | Huang Xing, Dou Liangbin, Zuo Xiongdi, Gao Hui, Li Tiantai. Dynamic imbibition and drainage laws of factures in tight reservoirs [J]. Acta Petrolei Sinica, 2021, 42(7): 924-935. |
[13] | Li Ning, Xu Binsen, Wu Hongliang, Feng Zhou, Li Yusheng, Wang Kewen, Liu Peng. Application status and prospects of artificial intelligence in well logging and formation evaluation [J]. Acta Petrolei Sinica, 2021, 42(4): 508-522. |
[14] | Li Tong, Long Anlin, Liu Bo, Ding Xiaojun, Yu Huimin, Lu Shanshan, Song Yanchen, Shi Kaibo. Breakthrough pressure and development strategy for gas injection in interlayers in low-permeability sandstone reservoirs: a case study of the Gasikule E31 reservoir, Q aidam Basin [J]. Acta Petrolei Sinica, 2021, 42(10): 1364-1372. |
[15] | Huang Xing, Ni Jun, Li Xiang, Xue Junjie, Bai Mingxing, Zhou Tong. Characteristics and influencing factors of CO2 flooding in different microscopic pore structures in tight reservoirs [J]. Acta Petrolei Sinica, 2020, 41(7): 853-864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 100724
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn