Acta Petrolei Sinica ›› 2025, Vol. 46 ›› Issue (6): 1168-1179,1192.DOI: 10.7623/syxb202506010

• OIL FIELD DEVELOPMENT • Previous Articles    

Mechanism of high-pressure fracturing fluid invasion and coupled fluid-solid simulation in shale gas reservoirs

Xu Yingying1, Hu Zhiming1, Shi Yuxin1, Duan Xianggang1, Chang Jin1, Xie Weiyang2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. PetroChina Southwest Oil & Gasfield Company, Sichuan Chengdu 610056, China
  • Received:2024-08-21 Revised:2025-03-14 Published:2025-06-28

页岩气藏高压压裂液侵入机理与流固耦合模拟

许莹莹1, 胡志明1, 石雨昕1, 端祥刚1, 常进1, 谢维扬2   

  1. 1. 中国石油勘探开发研究院 北京 100083;
    2. 中国石油西南油气田公司 四川成都 610056
  • 通讯作者: 胡志明,男,1977年8月生,2006年获中国科学院渗流流体力学研究所硕士学位,现为中国石油勘探开发研究院高级工程师,主要从事非常规油气渗流理论研究。Email:huzhiming69@petrochina.com.cn
  • 作者简介:许莹莹,女,1995年4月生,2024年获中国科学院渗流流体力学研究所博士学位,现为中国石油勘探开发研究院工程师,主要从事非常规油气多场耦合渗流理论及产能评价研究。Email:xuyy2024@petrochina.com.cn
  • 基金资助:
    中国石油天然气集团有限公司基础性前瞻性科技专项(2023ZZ08)资助。

Abstract: During volumetric fracturing, the interaction between tens of thousands of cubic meters of fracturing fluid and reservoir rock significantly intensifies the stress-sensitive damage in shale fracture networks. This results in low flowback rates, rapid initial production decline, and challenges in maintaining long-term stable production. To clarify the invasion distribution characteristics and influence mechanism of high-pressure fracturing fluid in shale formations is crucial for understanding the permeability stress sensitivity of water-invaded shale reservoirs and improving field development performance. The employed research methods include the low-field high-pressure gradient nuclear magnetic resonance (NMR)real-time displacement monitoring and coupled fluid-solid numerical models, which reveal the invasion distribution characteristics and influence mechanisms of high-pressure fracturing fluid during different imbition stages. The results indicate that with the increase in imbibition duration, the matrix water saturation exhibits an oscillatory-progressive propagation along the invasion direction. The degree of high-pressure water invasion in the matrix shows a positive power function correlation with imbibition duration, and a linear correlation with permeability and clay mineral content, with a water invasion depth of 4-6 cm. The clay mineral hydration plays a non-negligible role in shale imbibition, contributing 76.54% of the comulative water uptake. The increasing matrix permeability and clay mineral content induce a linear reduction exceeding 30% in the elastic modulus of water-invaded shale matrices, thus exacerbating shale stress sensitivity.

Key words: high-pressure fracturing fluid, water invasion, gradient nuclear magnetic resonance, water invasion-induced expansion deformation, fluid-solid coupling

摘要: 在体积压裂过程中,压裂液与储层岩石发生反应,极大地增加了页岩缝网体应力敏感损害程度,导致页岩气井返排率低、初期产能递减快、长期稳产困难。为厘清页岩高压压裂液侵入分布特征及影响机理,明确水侵页岩储层渗透率应力敏感性规律,从而提升现场开发效果,采用低场高压梯度核磁共振在线驱替以及流固耦合数值模型等方法,揭示了不同吸水时刻页岩高压压裂液侵入分布特征以及影响机理。研究结果表明,随着吸水时长的增加,基质含水饱和度沿着水侵方向上下波动地递进式传播。基质高压水侵程度与吸水时长呈幂函数正相关、与渗透率以及黏土矿物含量呈线性正相关,水侵厚度可达4~6 cm。黏土矿物吸附水分的作用对页岩吸水不可忽视,黏土矿物吸水对页岩累积吸水量的贡献达76.54%。基质渗透率、黏土矿物含量的增加会诱导水侵页岩基质弹性模量线性降低30%以上,加剧页岩应力敏感性程度。

关键词: 高压压裂液, 水侵, 梯度核磁共振, 水侵膨胀变形, 流固耦合

CLC Number: