Acta Petrolei Sinica ›› 2025, Vol. 46 ›› Issue (9): 1738-1750,1791.DOI: 10.7623/syxb202509007

• PETROLEUM EXPLORATION • Previous Articles    

A new prediction method for high-permeability carbonate reservoir based on multi-source data fusion and its application

He Wenyuan1, Chen Xin2, Xia Yaliang2, Wang Bo2, Xiao Dengyi2, Tang Zichang2   

  1. 1. China National Oil and Gas Exploration and Development Company Ltd., Beijing 100034, China;
    2. CNPC Bureau of Geophysical Prospecting Inc., Hebei Zhuozhou 072750, China
  • Received:2025-01-20 Revised:2025-04-06 Published:2025-10-11

一种多源数据融合的碳酸盐岩高渗带预测方法及其应用

何文渊1, 陈鑫2, 夏亚良2, 王波2, 肖灯意2, 唐资昌2   

  1. 1. 中国石油国际勘探开发有限公司 北京 100034;
    2. 中国石油集团东方地球物理勘探有限责任公司 河北涿州 072750
  • 通讯作者: 何文渊,男,1974年10月生,2001年获北京大学博士学位,现为中国石油国际勘探开发有限公司总经理、教授级高级工程师,主要从事油气勘探开发及生产管理工作。
  • 作者简介:何文渊,男,1974年10月生,2001年获北京大学博士学位,现为中国石油国际勘探开发有限公司总经理、教授级高级工程师,主要从事油气勘探开发及生产管理工作。Email:hewenyuan@cnpcint.com
  • 基金资助:
    中国石油天然气股份有限公司科技重大专项"海外大型碳酸盐岩油藏高效上产关键技术研究"(2023ZZ19)资助。

Abstract: Accurate prediction of high-permeability carbonate reservoirs is crucial for enhancing efficiency and recovery rates in oil and gas field development. The paper proposes a method integrating multi-source data to address the challenge of predicting high-permeability zones in carbonate reservoirs, especially the urgent need for characterizing high-permeability reservoirs in waterflooded oilfields in the Middle East. This method can accurately identify high-permeability zones based on the combination of core and thin section observations with petrophysical tests. Subsequently, intelligent logging lithofacies analysis techniques are employed to achieve the refined classification of rock types, and establish a reliable porosity-permeability relationship model. To overcome the precision limitations of conventional methods, a high-resolution full-frequency seismic inversion technology is used to delineate reservoir properties. Combined with deep learning-based approaches, an achievement has been made in the intelligent prediction of three-dimensional spatial permeability distribution. By integrating seismic-based minor fault prediction with dynamic production data, the study reveals the controlling regularity of fracture system on permeability distribution, thus achieving dynamic calibration and optimization of predictions. In practical applications in W field of the Middle East, this method reduces permeability prediction errors from traditional levels of 15 % to below 7 %, providing a reliable basis for well network optimization and injection-production scheme adjustment, thereby enhancing the development effect. This predictive framework offers an innovative solution for efficiently exploiting complex carbonate reservoirs, with promising application prospects and significant potential for widespread adoption.

Key words: high-permeability zone, carbonate reservoir, permeability prediction, heterogeneity, full-frequency seismic inversion (FFI), intelligent logging lithofacies analysis, Middle East

摘要: 高渗透碳酸盐岩储层的精准预测是提升油气田开发效率与采收率的关键。针对碳酸盐岩储层强非均质性导致的高渗带预测难题,特别是中东地区注水开发油田对高渗透储层表征的迫切需求,提出了一种多源数据融合的高渗带预测方法。该方法首先通过岩心、岩石薄片观察与物性测试的有机结合,准确识别储层高渗带;进而基于智能测井相分析技术,实现高渗带岩石类型的精细划分,并建立可靠的孔隙度—渗透率关系模型。为突破传统方法的精度限制,采用高精度全频地震反演技术精细刻画储层物性分布,结合深度学习方法实现渗透率三维空间展布的智能化预测。通过整合地震小断层预测与生产动态数据,揭示断裂系统对渗透率分布的控制规律,最终实现预测结果的动态校正与优化。在中东地区W油田的实际应用中,该方法将渗透率预测误差从传统方法的15%降低至7%以下,为井网优化与注采方案调整提供了可靠依据,有效提升了开发效果。所建立的预测方法体系为复杂碳酸盐岩储层高效开发提供了创新性解决方案,具有良好的应用前景与推广价值。

关键词: 高渗带, 碳酸盐岩, 渗透率预测, 非均质性, 全频地震反演, 智能测井相分析, 中东地区

CLC Number: