| [1] 魏友华,郭科,陈聆,等.信息融合在复杂油气储层物性参数综合研究中的应用[J].地球物理学进展,2008,23(1):153-156.Wei Youhua,Guo Ke,Chen Ling,et al.The application of data fusion in the research of physic parameters of complicated oil-gas reservoir[J].Progress in Geophysics,2008,23(1):153-156.
 [2] 李建忠,郑民,陈晓明,等.非常规油气内涵辨析、源-储组合类型及中国非常规油气发展潜力[J]. 石油学报,2015,36(5):521-532.
 Li Jianzhong,Zheng Min,Chen Xiaoming,et al.Connotation analyses,source-reservoir assemblage types and development potential of unconventional hydrocarbon in China[J].Acta Petrolei Sinica,2015,36(5):521-532.
 [3] 吴媚,符力耘,李维新.高分辨率非线性储层物性参数反演方法和应用[J].地球物理学报,2008,51(2):546-557.
 Wu Mei,Fu Liyun,Li Weixin.A high-resolution nonlinear inversion method of reservoir parameters and its application to oil/gas exploration[J].Chinese Journal of Geophysics,2008,51(2):546-557.
 [4] McCormack M D.Neural computing in geophysics[J].The Leading Edge,1991,10(1):11-15.
 [5] 董恩清,高宏亮,李家金.波阻抗约束反演及储层物性参数计算方法[J].测井技术,1998,22(5):337-340.
 Dong Enqing,Gao Hongliang,Li Jiajin.Acoustic impedance constrained inversion and the method of computing reservoir parameters[J].Well Logging Technology,1998,22(5):337-340.
 [6] 印兴耀,杨风丽,吴国忱.神经网络在CB油田储层预测和储层厚度计算中的应用[J].石油大学学报:自然科学版,1998,22(2):17-20.
 Yin Xingyao,Yang Fengli,Wu Guochen.Application of neural network to predicting reservoir and calculating thickness in CB oil field[J].Journal of the University of Petroleum,China:Edition of Natural Sciences,1998,22(2):17-20.
 [7] 吴秋波,吴元,王允诚.混合学习法前向网络多属性储层参数预测[J].西南石油大学学报:自然科学版,2011,33(2):68-72.
 Wu Qiubo,Wu Yun,Wang Yuncheng.Reservoir parameter prediction by multi-attribute based on hybrid learning algorithm of feed-forward network[J].Journal of Southwest Petroleum University:Science & Technology Edition,2011,33(2):68-72.
 [8] 宋维琪.应用地震属性与测井数据反演储层参数[J].勘探地球物理进展,2003,26(3):216-219.
 Song Weiqi.Inversion of reservoir parameters with seismic attributes and logging data[J].Progress in Exploration Geophysics,2003,26(3):216-219.
 [9] 刘百红,李建华,魏小东,等.随机反演在储层预测中的应用[J].地球物理学进展,2009,24(2):581-589.
 Liu Baihong,Li Jianhua,Wei Xiaodong,et al.The application of stochastic seismic inversion in reservoir prediction[J].Progress in Geophysics,2009,24(2):581-589.
 [10] 许建华,张学工,李衍达.应用核Fisher判别技术预测油气储集层[J].石油地球物理勘探,2002,37(2):170-174.
 Xu Jianhua,Zhang Xuegong,Li Yanda.Application of kernel Fisher discriminating technique to prediction of hydrocarbon reservoir[J].Oil Geophysical Prospecting,2002,37(2):170-174.
 [11] Mukerji T,Avseth P,Mavko G,et al.Statistical rock physics:combining rock physics,information theory,and geostatistics to reduce uncertainty in seismic reservoir characterization[J].The Leading Edge,2001,20(3):313-319.
 [12] Eidsvik J,Avseth P,Omre H,et al.Stochastic reservoir characterization using prestack seismic data[J]. Geophysics,2004,69(4):978-993.
 [13] 陈波,胡少华,毕建军.地震属性模式聚类预测储层物性参数[J].石油地球物理勘探,2005,40(2):204-208.
 Chen Bo,Hu Shaohua,Bi Jianjun.Prediction of physical reservoir parameters by seis-mic attributes pattern cluster[J].Oil Geophysical Prospecting,2005,40(2):204-208.
 [14] Grana D,Rossa E D.Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion[J].Geophysics,2010,75(3):O21-O37.
 [15] Bosch M,Carvajal C,Rodrigues J,et al.Petrophysical seismic inversion conditioned to well-log data:methods and application to a gas reservoir[J].Geophysics,2009,74(2):O1-O15.
 [16] 印兴耀,崔维,宗兆云,等.基于弹性阻抗的储层物性参数预测方法[J].地球物理学报,2014,57(12):4132-4140.
 Yin Xingyao,Cui Wei,Zong Zhaoyun,et al.Petrophysical property inversion of reservoirs based on elastic impedance[J].Chinese Journal of Geophysics,2014,57(12):4132-4140.
 [17] Ma Y Z,La Pointe P R.Uncertainty analysis and reservoir modeling[M].Tulsa:American Association of Petroleum Geologists,2011.
 [18] 王孝超.油气储层建模中的不确定性研究[D].西安:西安石油大学,2014.
 Wang Xiaochao.Research the uncertainty in reservoir modeling[D].Xi'an:Xi'an Shiyou University,2014.
 [19] Vicente M G,Mustieles F J,Limeres A C,et al.Uncertainty evaluation in emerging gas projects in North Africa using geological modeling,reservoir simulation and experimental design[R].SPE 127853,2010.
 [20] Caers J.Modeling uncertainty in the earth sciences[M].Chichester:Wiley-Blackwell,2011.
 [21] 边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2000.
 Bian Zhaoqi,Zhang Xuegong.Pattern recognition[M].2nd ed.Beijing:Tsinghua University Press,2000.
 [22] 林承焰,陈仕臻,张宪国,等.多趋势融合的概率体约束方法及其在储层建模中的应用[J].石油学报,2015,36(6):730-739.
 Lin Chengyan,Chen Shizhen,Zhang Xianguo,et al.Probability constraint method based on multiple trend integration and its application in reservoir modeling[J].Acta Petrolei Sinica,2015,36(6):730-739.
 [23] 胡华锋,印兴耀,吴国忱.基于贝叶斯分类的储层物性参数联合反演方法[J].石油物探,2012,51(3):225-232.
 Hu Huafeng,Yin Xingyao,Wu Guochen.Joint inversion of petrophysical parameters based on Bayesian classification[J].Geophysical Prospecting for Petroleum,2012,51(3):225-232.
 [24] 张玉敏.基于不同核函数的概率密度函数估计比较研究[D].保定:河北大学,2010.
 Zhang Yumin.The comparative study of probability density function estimation based on the different kernel functions[D].Baoding:Hebei University,2010.
 [25] 陈相兵.基于多元密度核估计的Bayes判别法[J].数学的实践与认识,2015,45(10):185-189.
 Chen Xiangbing.Bayes multivariate discriminant method based on kernel density estimation[J].Mathematics in Practice and Theory,2015,45(10):185-189.
 [26] 王芳芳.基于多点地质统计学的储层表征方法研究[D].北京:中国石油大学(北京),2014.
 Wang Fangfang.Reservoir characterization based on multiple point geostatistics[D].Beijing:China University of Petroleum (Beijing),2014.
 [27] Grana D,Mukerji T,Dvorkin J,et al.Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method[J].Geophysics, 2012,77(4):M53-M72.
 [28] 曹丹平.基于Backus等效平均的测井资料尺度粗化方法研究[J].石油物探,2015,54(1):105-111.
 Cao Danping.The upscaling method of the well logging data based on Backus equivalence average method[J].Geophysical Prospecting for Petroleum,2015,54(1):105-111.
 |