[1] 李睿.油气管道内检测技术与数据分析方法发展现状及展望[J].油气储运, 2024, 43(3):241-256. LI Rui.Current progress and prospects of in-line inspection techniques and data analysis methods for oil and gas pipelines[J].Oil & Gas Storage and Transportation, 2024, 43(3):241-256. [2] 张宏, 吴锴, 冯庆善, 等.高钢级管道环焊缝断裂韧性与裂尖拘束关系[J].石油学报, 2023, 44(2):385-393. ZHANG Hong, WU Kai, FENG Qingshan, et al.Relationship between fracture toughness and crack tip constraint of high-strength pipe girth welds[J].Acta Petrolei Sinica, 2023, 44(2):385-393. [3] 吴华, 徐莹莹, 徐凌, 等.掺氢输送管道材料的适应性及评价方法[J].力学与实践, 2024, 46(4):722-731. WU Hua, XU Yingying, XU Ling, et al.Adaptability and evaluation method of pipeline materials in hydrogen blended natural gas pipeline network[J].Mechanics in Engineering, 2024, 46(4):722-731. [4] 张劲军, 苏怀, 高鹏.天然气管网韧性保供问题及其研究展望[J].石油学报, 2020, 41(12):1665-1678. ZHANG Jinjun, SU Huai, GAO Peng.Resilience-based supply assurance of natural gas pipeline networks and its research prospects[J].Acta Petrolei Sinica, 2020, 41(12):1665-1678. [5] 杨永, 罗艳龙, 孙明, 等.油气管道交流杂散电流腐蚀研究进展[J].石油学报, 2021, 42(9):1247-1254. YANG Yong, LUO Yanlong, SUN Ming, et al.Research advances in stray alternating current corrosion of oil and gas pipelines[J].Acta Petrolei Sinica, 2021, 42(9):1247-1254. [6] 王小林, 刘嘉翌, 杜东, 等.中国石油氨能产业发展战略[J].石油学报, 2025, 46(2):456-465. WANG Xiaolin, LIU Jiayi, DU Dong, et al.Development strategy of CNPC’s ammonia energy industry[J].Acta Petrolei Sinica, 2025, 46(2):456-465. [7] 甄莹, 常群, 李发根, 等.基于裂纹尖端张开角的Battelle双曲线模型修正[J].石油学报, 2022, 43(11):1642-1651, 1663. ZHEN Ying, CHANG Qun, LI Fagen, et al.Battelle two-curve model correction based on crack tip opening angle[J].Acta Petrolei Sinica, 2022, 43(11):1642-1651, 1663. [8] BEBEN D, STELIGA T.Monitoring and preventing failures of transmission pipelines at oil and natural gas plants[J].Energies, 2023, 16(18):6640. [9] 甄莹, 曹宇光, 张振永, 等.管土耦合作用下超临界CO2管道裂纹动态扩展模拟方法[J].石油学报, 2024, 45(7):1130-1140. ZHEN Ying, CAO Yuguang, ZHANG Zhenyong, et al.The numerical simulation method for dynamic crack propagation of supercritical CO2 pipeline under the pipe-soil coupling[J].Acta Petrolei Sinica, 2024, 45(7):1130-1140. [10] XIAO Rui, ZAYED T, MEGUID M A, et al.Understanding the factors and consequences of pipeline incidents:an analysis of gas transmission pipelines in the US[J].Engineering Failure Analysis, 2023, 152:107498. [11] BANAKHEVYCH Y V.Technologies of cleaning and in-line inspection of gas mains[J].Journal of Hydrocarbon Power Engineering, 2020, 7(1):16-25. [12] HILVERT M, BEUKER T.High-resolution EMAT as a diagnostic tool for analysis of SCC and crack-like pipelines defects[C]//ASME 2015 India International Oil and Gas Pipeline Conference.New Delhi:ASME, 2015:V001T04A005. [13] MA Qiuping, TIAN Guiyun, ZENG Yanli, et al.Pipeline in-line inspection method, instrumentation and data management[J].Sensors, 2021, 21(11):3862. [14] FENG Qingshan, SUTHERLAND J, GU B, et al.Evolution of triax magnetic flux leakage inspection for mitigation of spiral weld anomalies[C]//2010 8th International Pipeline Conference.Calgary:ASME, 2010:209-216. [15] FENG Qingshan, LI Rui, NIE Baohua, et al.Literature review:theory and application of in-line inspection technologies for oil and gas pipeline girth weld defection[J].Sensors, 2016, 17(1):50. [16] CHEN Pengchao, LI Rui, FU Kuan, et al.Research and method for in-line inspection technology of girth weld in long-distance oil and gas pipeline[J].Journal of Physics:Conference Series, 2021, 1986:012052. [17] 吴志平, 玄文博, 戴联双, 等.管道内检测技术与管理的发展现状及提升策略[J].油气储运, 2020, 39(11):1219-1227. WU Zhiping, XUAN Wenbo, DAI Lianshuang, et al.Development status and improvement strategy of in-line inspection technology and management[J].Oil & Gas Storage and Transportation, 2020, 39(11):1219-1227. [18] CHEN Pengchao, LI Rui, JIA Guangming, et al.A decade review of the art of inspection and monitoring technologies for long-distance oil and gas pipelines in permafrost areas[J].Energies, 2023, 16(4):1751. [19] YANG Lijian, HUANG Ping, BAI Shi, et al.An effective method for differentiating inside and outside defects of oil and gas pipelines based on additional eddy current in low-frequency electromagnetic detection technique[J].Japanese Journal of Applied Physics, 2020, 59(9):096505. [20] YANG Lijian, HUANG Ping, GAO Songwei, et al.Research on the magnetic flux leakage field distribution characteristics of defect in low-frequency electromagnetic detection technique[J].IEICE Electronics Express, 2021, 18(1):20200362. [21] 王书怡, 富宽, 王亚楠, 等.基于组合滤波的漏磁内检测数据特征无损压缩方法[J].油气储运, 2023, 42(3):306-312. WANG Suyi, FU Kuan, WANG Yanan, et al.Feature lossless compression method of magnetic flux leakage in-line inspection data based on the combined filtering[J].Oil & Gas Storage and Transportation, 2023, 42(3):306-312. [22] 邵卫林, 陈金忠, 马义来, 等.基于多传感器数据融合技术的漏磁内检测数据分析[J].传感技术学报, 2019, 32(10):1541-1548. SHAO Weilin, CHEN Jinzhong, MA Yilai, et al.Analysis of magnetic flux leakage in-line inspection data based on multi-sensor data fusion technology[J].Chinese Journal of Sensors and Actuators, 2019, 32(10):1541-1548. [23] 杨理践, 梁成壮, 高松巍, 等.管道漏磁内检测的管壁缺陷漏磁场解析模型[J].电子测量与仪器学报, 2021, 35(7):106-114. YANG Lijian, LIANG Chengzhuang, GAO Songwei, et al.Analytical model of magnetic flux leakage field of pipe wall defects based on magnetic flux leakage internal detection[J].Journal of Electronic Measurement and Instrumentation, 2021, 35(7):106-114. [24] 李佳音.基于平衡电磁技术的管道裂纹检测关键问题研究[D].沈阳:沈阳工业大学, 2023. LI Jiayin.Research on key issues of pipeline crack detection based on balanced-field electromagnetic technique[D].Shenyang:Shenyang University of Technology, 2023. [25] 全国锅炉压力容器标准化技术委员会.钢质管道内检测技术规范:GB/T 27699—2023[S].北京:中国标准出版社, 2023. National Boiler and Pressure Vessel Standardization Technical Committee.Technical specification for in-line inspection of steel pipeline:GB/T 27699-2023[S].Beijing:Standards Press of China, 2023.
|