Acta Petrolei Sinica ›› 2025, Vol. 46 ›› Issue (11): 2075-2090.DOI: 10.7623/syxb202511006
• PETROLEUM EXPLORATION • Previous Articles
Wang Dongsheng1, Liu Yang2, Zhang Jinchuan3, Liu Zhujiang1, Chen Feiran1, Lang Yue4, Zhou Dongsheng3, Chen Shijing5, Su Zexin1, Tong Zhongzheng3
Received:2025-03-08
Revised:2025-06-04
Published:2025-12-04
王东升1, 刘飏2, 张金川3, 刘珠江1, 陈斐然1, 郎岳4, 周东升3, 陈世敬5, 苏泽昕1, 仝忠正3
通讯作者:
刘飏,男,1987年9月生,2017年获中国地质大学(北京)博士学位,现为大连海事大学环境科学与工程学院副教授,主要从事油气地质综合研究工作。Email:yang.liu@dlmu.edu.cn
作者简介:王东升,男,1989年12月生,2023年获中国地质大学(北京)博士学位,现为中国石油化工股份有限公司勘探分公司高级工程师,主要从事海相页岩气勘探及评价工作。Email:3006190042@email.cugb.edu.cn
基金资助:CLC Number:
Wang Dongsheng, Liu Yang, Zhang Jinchuan, Liu Zhujiang, Chen Feiran, Lang Yue, Zhou Dongsheng, Chen Shijing, Su Zexin, Tong Zhongzheng. Nitrogen enrichment mechanism and nitrogen-rich shale gas genesis of the Lower Cambrian Niutitang Formation shale in the Upper Yangtze block[J]. Acta Petrolei Sinica, 2025, 46(11): 2075-2090.
王东升, 刘飏, 张金川, 刘珠江, 陈斐然, 郎岳, 周东升, 陈世敬, 苏泽昕, 仝忠正. 上扬子地块下寒武统牛蹄塘组页岩的氮富集机理与富氮页岩气成因[J]. 石油学报, 2025, 46(11): 2075-2090.
Add to citation manager EndNote|Ris|BibTeX
| [1] 郭旭升,王濡岳,申宝剑,等. 中国页岩气地质特征、资源潜力与发展方向[J].石油勘探与开发,2025,52(1):15-28. GUO Xusheng,WANG Ruyue,SHEN Baojian,et al.Geological characteristics,resource potential,and development direction of shale gas in China[J].Petroleum Exploration and Development,2025,52(1):15-28. [2] 赵文智,李建忠,杨涛,等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发,2016,43(4):499-510. ZHAO Wenzhi,LI Jianzhong,YANG Tao,et al.Geological difference and its significance of marine shale gases in South China[J].Petroleum Exploration and Development,2016,43(4):499-510. [3] 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发,2015,42(6):689-701. ZOU Caineng,DONG Dazhong,WANG Yuman,et al.Shale gas in China:characteristics,challenges and prospects (Ⅰ)[J].Petroleum Exploration and Development,2015,42(6):689-701. [4] 梁峰,姜巍,戴赟,等.四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J].天然气地球科学,2022,33(5):755-763. LIANG Feng,JIANG Wei,DAI Yun,et al.Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas,Sichuan Basin[J].Natural Gas Geoscience,2022,33(5): 755-763. [5] JENDEN P D,KAPLAN I R,POREDA R J,et al.Origin of nitrogen-rich natural gases in the California Great Valley:evidence from helium,carbon and nitrogen isotope ratios[J].Geochimica et Cosmochimica Acta,1988,52(4):815-861. [6] MENG Kang,ZHANG Tongwei,SHAO Deyong,et al.Nitrogen isotopes of released gas from rock crushing and implications to origins of molecular nitrogen in Lower Cambrian overmature shale gas in South China[J].Marine and Petroleum Geology,2024,163:106794. [7] 焦伟伟,汪生秀,程礼军,等.渝东南地区下寒武统页岩气高氮低烃成因[J].天然气地球科学,2017,28(12):1882-1890. JIAO Weiwei,WANG Shengxiu,CHENG Lijun,et al.The reason of high nitrogen content and low hydrocarbon content of shale gas from the Lower Cambrian Niutitang Formation in southeast Chongqing[J].Natural Gas Geoscience,2017,28(12):1882-1890. [8] 苏越,王伟明,李吉君,等.中国南方海相页岩气中氮气成因及其指示意义[J].石油与天然气地质,2019,40(6):1185-1196. SU Yue,WANG Weiming,LI Jijun,et al.Origin of nitrogen in marine shale gas in Southern China and its significance as an indicator[J].Oil & Gas Geology,2019,40(6):1185-1196. [9] 夏鹏,王甘露,曾凡桂,等.黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J].天然气地球科学,2018,29(9):1345-1355. XIA Peng,WANG Ganlu,ZENG Fangui,et al.The characteristics and mechanism of high-over matured nitrogen-rich shale gas of Niutitang Formation,northern Guizhou area[J].Natural Gas Geoscience,2018,29(9):1345-1355. [10] KOTARBA M J,NAGAO K,KARNKOWSKI P H.Origin of gaseous hydrocarbons,noble gases,carbon dioxide and nitrogen in Carboniferous and Permian strata of the distal part of the Polish Basin:geological and isotopic approach[J].Chemical Geology,2014,383:164-179. [11] LIU Yang,ZHANG Jinchuan,REN Jun,et al.Stable isotope geochemistry of the nitrogen-rich gas from Lower Cambrian shale in the Yangtze Gorges area,South China[J].Marine and Petroleum Geology,2016,77:693-702. [12] JURISCH S A,HEIM S,KROOSS B M,et al.Systematics of pyrolytic gas (N2,CH4)liberation from sedimentary rocks:contribution of organic and inorganic rock constituents[J].International Journal of Coal Geology,2012,89:95-107. [13] KROOSS B M,LITTKE R,MüLLER B,et al.Generation of nitrogen and methane from sedimentary organic matter:implications on the dynamics of natural gas accumulations[J].Chemical Geology,1995,126(3/4):291-318. [14] BOUDOU J P,ESPITALIÉ J.Molecular nitrogen from coal pyrolysis:kinetic modelling[J].Chemical Geology,1995,126(3/4):319-333. [15] 刘全有,刘文汇,KROOSS B M,等.天然气中氮的地球化学研究进展[J].天然气地球科学,2006,17(1):119-124. LIU Quanyou,LIU Wenhui,KROOSS B M,et al.Advances in nitrogen geochemistry of natural gas[J].Natural Gas Geoscience,2006,17(1):119-124. [16] LI Z X,BOGDANOVA S V,COLLINS A S,et al.Assembly,configuration,and break-up history of Rodinia:a synthesis[J].Precambrian Research,2008,160(1/2):179-210. [17] CAWOOD P A,STRACHAN R A,PISAREVSKY S A,et al.Linking collisional and accretionary orogens during Rodinia assembly and breakup:implications for models of supercontinent cycles[J].Earth and Planetary Science Letters,2016,449:118-126. [18] WANG Jian,LI Zhengxiang.History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J].Precambrian Research,2003,122(1/4):141-158. [19] ZHURAVLEV A Y,LIÑÁN E,VINTANED J A G,et al.New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain[J].Acta Palaeontologica Polonica,2012,57(1):205-224. [20] CHARVET J.The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:an overview[J].Journal of Asian Earth Sciences,2013,74:198-209. [21] XU Lingang,LEHMANN B,MAO Jingwen,et al.Mo isotope and trace element patterns of Lower Cambrian black shales in South China:multi-proxy constraints on the paleoenvironment[J].Chemical Geology,2012,318-319:45-59. [22] ZHU Maoyan,ZHANG Junming,YANG Aihua,et al.Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze platform:an integrated approach[J].Progress in Natural Science,2003,13(12):951-960. [23] STEINER M,LI Guoxiang,QIAN Yi,et al.Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze platform(China)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):67-99. [24] GAO Ping,LIU Guangdi,JIA Chengzao,et al.Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran-Early Cambrian:constraints from petrology and geochemistry[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,450:91-110. [25] WANG Dan,LING Hongfei,STRUCK U,et al.Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J].Nature Communications,2018,9(1):2575. [26] JIANG Ganqing,WANG Xinqiang,SHI Xiaoying,et al.The origin of decoupled carbonate and organic carbon isotope signatures in the Early Cambrian(ca.542-520 Ma)Yangtze platform[J].Earth and Planetary Science Letters,2012,317-318:96-110. [27] CAI Chunfang,XIANG Liangbin,YUAN Yuyang,et al.Marine C,S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze ocean[J].Journal of the Geological Society,2015,172(3):390-406. [28] ZHAO Xiangkuan,WANG Xinqiang,SHI Xiaoying,et al.Stepwise oxygenation of Early Cambrian ocean controls early metazoan diversification[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,504:86-103. [29] JIN Chengsheng,LI Chao,ALGEO T J,et al.A highly redox-heterogeneous ocean in South China during the Early Cambrian(~529-514 Ma):implications for biota-environment co-evolution[J].Earth and Planetary Science Letters,2016,441:38-51. [30] WANG Jianguo,CHEN Daizhao,YAN Detian,et al.Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J].Chemical Geology,2012,306-307:129-138. [31] GOLDBERG T,STRAUSS H,GUO Qingjun,et al.Reconstructing marine redox conditions for the Early Cambrian Yangtze platform:evidence from biogenic sulphur and organic carbon isotopes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):175-193. [32] LIU Kai,FENG Qinglai,SHEN Jun,et al.Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J].Palaeogeography, Palaeoclimatology,Palaeoecology,2018,491:1-9. [33] GUO Qingjun,STRAUSS H,LIU Congqiang,et al.Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian:evidence from the Yangtze platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):140-157. [34] 王丹.华南埃迪卡拉纪晚期—寒武纪早期海洋的氮循环与环境演化[D].南京:南京大学,2015. WANG Dan.Nitrogen cycle and marine environment during the Late Ediacaran-Early Cambrian in South China[D].Nanjing:Nanjing University,2015. [35] 韩美玲.黔北地区早寒武世古海洋环境演化及其对有机质富集的影响[D].北京:中国地质大学(北京),2021. HAN Meiling.The paleo-ocean environment evolution of Early Cambrian and its influence on organic matter enrichment model in northern Guizhou[D].Beijing:China University of Geosciences (Beijing),2021. [36] CHENG Meng,LI Chao,JIN Chengsheng,et al.Evidence for high organic carbon export to the Early Cambrian seafloor[J].Geochimica et Cosmochimica Acta,2020,287:125-140. [37] CHEN Yan,DIAMOND C W,STüEKEN E E,et al.Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze block across the Ediacaran-Cambrian transition[J].Geochimica et Cosmochimica Acta,2019,257:243-265. [38] ROBINSON R S,KIENAST M,ALBUQUERQUE A L,et al.A review of nitrogen isotopic alteration in marine sediments[J].Paleoceanography,2012,27(4):PA4203. [39] GRUBER N,GALLOWAY J N.An earth-system perspective of the global nitrogen cycle[J].Nature,2008,451(7176):293-296. [40] THOMAZO C,PAPINEAU D.Biogeochemical cycling of nitrogen on the early earth[J].Elements,2013,9(5):345-351. [41] PAYTAN A,MCLAUGHLIN K.The oceanic phosphorus cycle[J].Chemical Reviews,2007,107(2):563-576. [42] HEIM S,JURISCH S A,KROOSS B M,et al.Systematics of pyrolytic N2 and CH4 release from peat and coals of different thermal maturity[J].International Journal of Coal Geology,2012,89:84-94. [43] MINGRAM B,HOTH P,LüDERS V,et al.The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin[J].International Journal of Earth Sciences,2005,94(5/6):1010-1022. [44] KROOSS B M,FRIBERG L,GENSTERBLUM Y,et al.Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks[J].International Journal of Earth Sciences,2005,94(5/6):1023-1038. [45] WILLIAMS L B,FERRELL JR R E,CHINN E W,et al.Fixed-ammonium in clays associated with crude oils[J].Applied Geochemistry,1989,4(6):605-616. [46] STüEKEN E E,ZALOUMIS J,MEIXNEROVÁ J,et al.Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks[J].Geochimica et Cosmochimica Acta,2017,217:80-94. [47] COOPER J E,EVANS W S.Ammonium-nitrogen in Green River Formation oil shale[J].Science,1983,219(4584):492-493. [48] LINDGREEN H.Ammonium fixation during illite-smectite diagenesis in Upper Jurassic shale,North Sea[J].Clay Minerals,1994,29(4):527-537. [49] STüEKEN E E,BUICK R,GUY B M,et al.Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr[J].Nature,2015,520(7549):666-669. [50] BAXBY M,PATIENCE R L,BARTLE K D.The origin and diagenesis of sedimentary organic nitrogen[J].Journal of Petroleum Geology,1994,17(2):211-230. [51] STüEKEN E E,KIPP M A,KOEHLER M C,et al.The evolution of Earth’s biogeochemical nitrogen cycle[J].Earth-Science Reviews,2016,160:220-239. [52] MURRAY J W,FUCHSMAN C,KIRKPATRICK J,et al.Species and δ15N signatures of nitrogen transformations in the suboxic zone of the Black Sea[J].Oceanography,2005,18(2):36-47. [53] FULTON J M,ARTHUR M A,FREEMAN K H.Black Sea nitrogen cycling and the preservation of phytoplankton δ15N signals during the Holocene[J].Global Biogeochemical Cycles,2012,26(2):GB2030. [54] BOUDREAU B P,CANFIELD D E.A provisional diagenetic model for pH in anoxic porewaters:application to the FOAM site[J].Journal of Marine Research,1988,46(2):429-455. [55] 陈娟.古代细粒沉积物中不同赋存状态氮的同位素分布特征及分馏机理[D].北京:中国石油大学(北京),2021. CHEN Juan.Isotopic distribution characteristics and fractionation mechanism of nitrogen in different states of ancient fine sediments[D].Beijing: China University of Petroleum (Beijing),2021. [56] ADER M,THOMAZO C,SANSJOFRE P,et al.Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks:assumptions and perspectives[J].Chemical Geology,2016,429:93-110. [57] ZHANG Xinning,WARD B B,SIGMAN D M.Global nitrogen cycle:critical enzymes,organisms,and processes for nitrogen budgets and dynamics[J].Chemical Reviews,2020,120(12):5308-5351. [58] HAMMARLUND E U,GAINES R R,PROKOPENKO M G,et al.Early Cambrian oxygen minimum zone-like conditions at Chengjiang[J].Earth and Planetary Science Letters,2017,475:160-168. [59] CREMONESE L,SHIELDS-ZHOU G,STRUCK U,et al.Marine biogeochemical cycling during the Early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section,South China[J].Precambrian Research,2013,225:148-165. [60] ZHANG Junpeng,FAN Tailiang,ZHANG Yuandong,et al.Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation[J].Scientific Reports,2017,7(1):8550. [61] CREMONESE L,SHIELDS-ZHOU G A,STRUCK U,et al.Nitrogen and organic carbon isotope stratigraphy of the Yangtze platform during the Ediacaran-Cambrian transition in South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2014,398:165-186. [62] WANG Dan,STRUCK U,LING Hongfei,et al.Marine redox variations and nitrogen cycle of the Early Cambrian southern margin of the Yangtze platform,South China:evidence from nitrogen and organic carbon isotopes[J].Precambrian Research,2015,267:209-226. [63] LIU Yang,MAGNALL J M,GLEESON S A,et al.Spatio-temporal evolution of ocean redox and nitrogen cycling in the Early Cambrian Yangtze ocean[J].Chemical Geology,2020,554:119803. [64] KIKUMOTO R,TAHATA M,NISHIZAWA M,et al.Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges,South China[J].Gondwana Research,2014,25(3):1057-1069. [65] XU Dongtao,WANG Xinqiang,SHI Xiaoying,et al.Nitrogen cycle perturbations linked to metazoan diversification during the Early Cambrian[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,538:109392. [66] WEI Guangyi,LING Hongfei,LI Da,et al.Marine redox evolution in the Early Cambrian Yangtze shelf margin area:evidence from trace elements,nitrogen and sulphur isotopes[J].Geological Magazine,2017,154(6):1344-1359. [67] LIU Yang,STüEKEN E E,WANG Dongsheng,et al.A potential linkage between excess silicate-bound nitrogen and N2-rich natural gas in sedimentary reservoirs[J].Chemical Geology,2022,600:120864. [68] LUO Genming,ALGEO T J,ZHAN Renbin,et al.Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,448:339-348. [69] LIU Yu,LI Chao,FAN Junxuan,et al.Elevated marine productivity triggered nitrogen limitation on the Yangtze platform (South China)during the Ordovician-Silurian transition[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,554:109833. [70] CHEN Yan,CAI Chunfang,QIU Zhen,et al.Evolution of nitrogen cycling and primary productivity in the tropics during the Late Ordovician mass extinction[J].Chemical Geology,2021,559:119926. [71] CALVERT S E.Beware intercepts:interpreting compositional ratios in multi-component sediments and sedimentary rocks[J].Organic Geochemistry,2004,35(8):981-987. [72] XIANG Lei,SCHOEPFER S D,ZHANG Hua,et al.Evolution of primary producers and productivity across the Ediacaran-Cambrian transition[J].Precambrian Research,2018,313:68-77. [73] FENG Lianjun,LI Chao,HUANG Jing,et al.A sulfate control on marine mid-depth euxinia on the Early Cambrian (ca.529-521 Ma)Yangtze platform,South China[J].Precambrian Research,2014,246:123-133. [74] MINGRAM B,BRÄUER K.Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt[J].Geochimica et Cosmochimica Acta,2001,65(2):273-287. [75] GAI Haifeng,TIAN Hui,CHENG Peng,et al.Characteristics of molecular nitrogen generation from overmature black shales in South China:preliminary implications from pyrolysis experiments[J].Marine and Petroleum Geology,2020,120:104527. |
| [1] | Song Yan, Wan Chengxiang. Mechanisms and differences of self-sealing in shale gas reservoirs of Longmaxi Formation in Sichuan Basin [J]. Acta Petrolei Sinica, 2025, 46(9): 1677-1687. |
| [2] | He Jianhua, Xiong Liang, Wang Ruyue, Xu Bilan, Li Ruixue, Cao Feng, Deng Hucheng, Xu hao, Li Yong, Li Dan, Yin Shuai. Disturbance factors of current geostress field of Longmaxi Formation shale in southeastern Sichuan Basin and their geological significance for gas exploitation [J]. Acta Petrolei Sinica, 2025, 46(4): 743-762. |
| [3] | Yang Yang, Zhang Xiaoming, Shi Wanzhong, Qu Yang, Feng Qian, Yu Cao. Differences of shale pore structure characteristics under different tectonic deformation in Fuling shale gas field [J]. Acta Petrolei Sinica, 2025, 46(3): 547-562. |
| [4] | Wu Jin, Guo Wei, Guo Wei, Zhao Shengxian, Gou Qiyong, Zeng Fancheng, Liu Yu, Zou Xiaopin, Wang Yuman, Liu Zhaolong. Sweet spot lithofacies and its genesis mechanism for stereoscopic development of deep marine shale: a case study of the first submember of Member 1 of Longmaxi Formation in Luzhou area, southern Sichuan Basin [J]. Acta Petrolei Sinica, 2024, 45(8): 1219-1233. |
| [5] | Zhu Yongjin, Zheng Jianfeng, Yu Guang, Chen Yongquan, Kang Tingting, Zhang You, Chen Sheng, Xiong Ran, Han Changwei. Sequence architecture,sedimentary evolution and hydrocarbon exploration potential of the large Cambrian platform margin in Lunnan-Gucheng area of Tarim Basin [J]. Acta Petrolei Sinica, 2024, 45(7): 1061-1077. |
| [6] | Hui Shasha, Pang Xiongqi, Chen Zhuoheng, Wang Chenxi, Shi Kanyuan, Hu Tao, Hu Yao, Li Min, Mei Shuxing, Li Maowen. Quantitative characterization of the contribution of pore types to pore space of marine shale in Sichuan Basin [J]. Acta Petrolei Sinica, 2024, 45(3): 531-547. |
| [7] | Liang Feng, Zhao Qun, Shi Xuewen, Wang Yuman, Zhang Qin, Zhou Shangwen, Qi Lin, Cui Huiying. A new method for isochronous stratigraphic division of Longmaxi Formation in Sichuan Basin, China [J]. Acta Petrolei Sinica, 2023, 44(8): 1274-1298. |
| [8] | Xiong Liang, Zhao Yong, Wei Limin, Pang Heqing, Ci Jianfa. Enrichment mechanisms and key exploration and development technologies of shale gas in Weirong marine shale gas field [J]. Acta Petrolei Sinica, 2023, 44(8): 1365-1381. |
| [9] | Wei Guoqi, Jia Chenzhao, Yang Wei. Geological characteristics of shelf-rimmed platform from Upper Sinian to Lower Cambrian and its control on formation of large gas fields in Anyue-Fengjie area [J]. Acta Petrolei Sinica, 2023, 44(2): 223-240. |
| [10] | Jiang Huachuan, Zhang Benjian, Liu Sibing, Wang Wenzhi, Zhou Gang, He Yuan, Li Kunyu, Wen Huaguo. Discovery of Guang’an-Shizhu paleo-uplift in Sichuan Basin and its oil and gas geological significance [J]. Acta Petrolei Sinica, 2023, 44(2): 270-284. |
| [11] | Shen Junjun, Wang Yuman, Li Hui, Ji Yubing, Qiu Zhen, Wang Pengwan, Meng Jianghui. Relationship between degree of water retention and enrichment of shale organic matter during the Ordovician-Silurian transition in western Hubei [J]. Acta Petrolei Sinica, 2023, 44(10): 1599-1611. |
| [12] | Jiang Pengfei, Wu Jianfa, Zhu Yiqing, Zhang Dekuang, Wu Wei, Zhang Rui, Wu Zhe, Wang Qing, Yang Yuran, Yang Xue, Wu Qiuzi, Chen Liqing, He Yifan, Zhang Juan. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin [J]. Acta Petrolei Sinica, 2023, 44(1): 91-109. |
| [13] | Wei Guoqi, Zhu Qiuying, Yang Wei, Zhang Chunlin, Mo Wuling, Wu Xueqiong. Geological characteristics and petroleum geological significance of Cambrian Tongchuan rift in the southern margin of Ordos Basin [J]. Acta Petrolei Sinica, 2022, 43(9): 1223-1235. |
| [14] | Guo Jianchun, Tao Liang, Hu Kejian, Deng Xian'an, Chen Chi, Li Ming, Zhao Zhihong. Experiment on imbibition law of aqueous phase in shale reservoir [J]. Acta Petrolei Sinica, 2022, 43(9): 1295-1304. |
| [15] | Guo Wei, Li Xizhe, Zhang Xiaowei, Lan Chaoli, Liang Pingping, Shen Weijun, Zheng Majia. Sedimentary microfacies and microrelief of organic-rich shale in deep-water shelf and their control on reservoirs:a case study of shale from Wufeng-Longmaxi formations in southern Sichuan Basin [J]. Acta Petrolei Sinica, 2022, 43(8): 1089-1106. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 100724
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn