Acta Petrolei Sinica ›› 2023, Vol. 44 ›› Issue (1): 72-90.DOI: 10.7623/syxb202301005
Previous Articles Next Articles
Hou Lianhua1,2, Wu Songtao1,2,3, Jiang Xiaohua1,2,3, Tian Hua1,2,3, Yu Zhichao1,2,3, Li Yafeng4, Liao Fengrong1,2,3, Wang Chanfei1, Shen Yue1,5, Li Mengying1, Hua Ganlin1,2,3, Zhou Chuanmin1,2,3, Li Hua4
Received:
2022-08-22
Revised:
2022-12-09
Online:
2023-01-25
Published:
2023-02-14
侯连华1,2, 吴松涛1,2,3, 姜晓华1,2,3, 田华1,2,3, 于志超1,2,3, 李亚锋4, 廖凤蓉1,2,3, 王婵菲1, 沈月1,5, 李梦莹1, 华柑霖1,2,3, 周川闽1,2,3, 李华4
通讯作者:
吴松涛,男,1985年10月生,2019年获中国石油勘探开发研究院博士学位,现为中国石油勘探开发研究院高级工程师,主要从事非常规油气地质与CO2捕获、利用与封存(CCUS)研究工作。Email:wust@petrochina.com.cn
作者简介:
侯连华,男,1970年7月生,2003年获石油大学(北京)博士学位,现为中国石油勘探开发研究院石油地质实验研究中心主任、教授级高级工程师,主要从事常规、非常规油气理论技术研发与综合研究工作。Email:houlh@petrochina.com.cn
基金资助:
CLC Number:
Hou Lianhua, Wu Songtao, Jiang Xiaohua, Tian Hua, Yu Zhichao, Li Yafeng, Liao Fengrong, Wang Chanfei, Shen Yue, Li Mengying, Hua Ganlin, Zhou Chuanmin, Li Hua. Situation, challenge and future direction of experimental methods for geological evaluation of shale oil[J]. Acta Petrolei Sinica, 2023, 44(1): 72-90.
侯连华, 吴松涛, 姜晓华, 田华, 于志超, 李亚锋, 廖凤蓉, 王婵菲, 沈月, 李梦莹, 华柑霖, 周川闽, 李华. 页岩油地质评价实验方法现状、挑战与发展方向[J]. 石油学报, 2023, 44(1): 72-90.
Add to citation manager EndNote|Ris|BibTeX
[1] U.S.Energy Information Administration.Annual energy outlook 2019 with projections to 2050[R].Washington D C:EIA, 2019. [2] ZOU Caineng.Unconventional petroleum geology[M].2nd ed.Amsterdam:Elsevier Press, 2017. [3] 赵文智, 胡素云, 侯连华, 等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发, 2020, 47(1):1-10. ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al.Types and resource potential of continental shale oil in China and its boundary with tight oil[J].Petroleum Exploration and Development, 2020, 47(1):1-10. [4] 金之钧, 朱如凯, 梁新平, 等.当前陆相页岩油勘探开发值得关注的几个问题[J].石油勘探与开发, 2021, 48(6):1276-1287. JIN Zhijun, ZHU Rukai, LIANG Xinping, et al.Several issues worthy of attention in current lacustrine shale oil exploration and development[J].Petroleum Exploration and Development, 2021, 48(6):1276-1287. [5] 焦方正, 邹才能, 杨智.陆相源内石油聚集地质理论认识及勘探开发实践[J].石油勘探与开发, 2020, 47(6):1067-1078. JIAO Fangzheng, ZOU Caineng, YANG Zhi.Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J].Petroleum Exploration and Development, 2020, 47(6):1067-1078. [6] 李国欣, 刘国强, 侯雨庭, 等.陆相页岩油有利岩相优选与压裂参数优化方法[J].石油学报, 2021, 42(11):1405-1416. LI Guoxin, LIU Guoqiang, HOU Yuting, et al.Optimization method of favorable lithofacies and fracturing parameter for continental shale oil[J].Acta Petrolei Sinica, 2021, 42(11):1405-1416. [7] 宋明水, 王永诗, 王学军, 等.成熟探区"勘探层单元"研究及其在渤海湾盆地东营凹陷的应用[J].石油与天然气地质, 2022, 43(3):499-513. SONG Mingshui, WANG Yongshi, WANG Xuejun, et al.Research of "synthem units of exploration" in mature exploration area and its application in the Dongying sag, Bohai Bay Basin[J].Oil & Gas Geology, 2022, 43(3):499-513. [8] U.S.Energy Information Administration.World shale resource assessments[EB/OL].(2015-09-24)[2022-06-18].http://www.eia.gov/analysis/studies/worldshalegas/. [9] 吴晓智, 柳庄小雪, 王建, 等.我国油气资源潜力、分布及重点勘探领域[J].地学前缘, 2022, 29(6):146-155. WU Xiaozhi, LIUZHUANG Xiaoxue, WANG Jian, et al.Petroleum resource potential, distribution and key exploration fields in China[J].Earth Science Frontiers, 2022, 29(6):146-155. [10] 付金华, 李士祥, 侯雨庭, 等.鄂尔多斯盆地延长组7段Ⅱ类页岩油风险勘探突破及其意义[J].中国石油勘探, 2020, 25(1):78-92. FU Jinhua, LI Shixiang, HOU Yuting, et al.Breakthrough of risk exploration of Class Ⅱ shale oil in Chang 7 Member of Yanchang Formation in the Ordos Basin and its significance[J].China Petroleum Exploration, 2020, 25(1):78-92. [11] 吴松涛, 朱如凯, 李勋, 等.致密储层孔隙结构表征技术有效性评价与应用[J].地学前缘, 2018, 25(2):191-203. WU Songtao, ZHU Rukai, LI Xun, et al.Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J].Earth Science Frontiers, 2018, 25(2):191-203. [12] 朱如凯, 金旭, 王晓琦, 等.复杂储层多尺度数字岩石评价[J].地球科学, 2018, 43(5):1773-1782. ZHU Rukai, JIN Xu, WANG Xiaoqi, et al.Multi-scale digital rock evaluation on complex reservoir[J].Earth Science, 2018, 43(5):1773-1782. [13] SCHIEBER J, SOUTHARD J, THAISEN K.Accretion of mudstone beds from migrating floccule ripples[J].Science, 2007, 318(5857):1760-1763. [14] 姜在兴, 梁超, 吴靖, 等.含油气细粒沉积岩研究的几个问题[J].石油学报, 2013, 34(6):1031-1039. JIANG Zaixing, LIANG Chao, WU Jing, et al.Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J].Acta Petrolei Sinica, 2013, 34(6):1031-1039. [15] 袁选俊, 林森虎, 刘群, 等.湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例[J].石油勘探与开发, 2015, 42(1):34-43. YUAN Xuanjun, LIN Senhu, LIU Qun, et al.Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern:a case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(1):34-43. [16] MACHLUS M L, OLSEN P E, CHRISTIE-BLICK N, et al.Spectral analysis of the Lower Eocene Wilkins Peak Member, Green River Formation, Wyoming:support for Milankovitch cyclicity[J].Earth and Planetary Science Letters, 2008, 268(1/2):64-75. [17] ABELS H A, AZIZ H A, VENTRA D, et al.Orbital climate forcing in mudflat to marginal lacustrine deposits in the Miocene Teruel Basin (northeast Spain)[J].Journal of Sedimentary Research, 2009, 79(11):831-847. [18] VALERO L, GARCÉS M, CABRERA L, et al.20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin[J].Earth and Planetary Science Letters, 2014, 408:183-193. [19] WU Huaichun, ZHANG Shihong, JIANG Ganqing, et al.The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J].Earth and Planetary Science Letters, 2009, 278(3/4):308-323. [20] 杨涵菲, 赵艳, 崔巧玉, 等.基于XRF岩芯扫描的Rb/Sr比值的古气候意义探讨——以青藏高原东部若尔盖盆地为例[J].中国科学:地球科学, 2021, 51(1):73-91. YANG Hanfei, ZHAO Yan, CUI Qiaoyu, et al.Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios:a case study in the Zoige Basin in the eastern Tibetan Plateau[J].Science China Earth Sciences, 2021, 64(1):80-95. [21] ZHANG Jianguo, JIANG Zaixing, LIANG Chao, et al.Astronomical forcing of meter-scale organic-rich mudstone-limestone cyclicity in the Eocene Dongying sag, China:implications for shale reservoir exploration[J].AAPG Bulletin, 2022, 106(8):1557-1579. [22] 李宏伟.柴达木盆地西南缘新生代旋回地层与沉积速率分析[D].成都:成都理工大学, 2015. LI Hongwei.Cyclostratigraphy and the deposition rate analysis of the Cenozoic strata in the southwestern margin of the Qaidam Basin[D].Chengdu:Chengdu University of Technology, 2015. [23] ROWE H, WANG Xiangzeng, FAN Bojiang, et al.Chemostratigraphic insights into fluvio-lacustrine deposition, Yanchang Formation, Upper Triassic, Ordos Basin, China[J].Interpretation, 2017, 5(2):SF149-SF165. [24] GUAN Modi, WU Songtao, HOU Lianhua, et al.Paleoenvironment and chemostratigraphy heterogenity of the Cretaceous organic-rich shales[J].Advances in Geo-Energy Research, 2021, 5(4):444-455. [25] BENAVENTE C, MANCUSO A, CABALERI N, et al.Comparison of lacustrine successions and their palaeohydrological implications in two sub-basins of the Triassic Cuyana rift, Argentina[J].Sedimentology, 2015, 62(7):1771-1813. [26] FAIRBANKS M D, RUPPEL S C, ROWE H.High-resolution stratigraphy and facies architecture of the Upper Cretaceous (Cenomanian-Turonian)Eagle Ford Group, Central Texas[J].AAPG Bulletin, 2016, 100(3):379-403. [27] SORBY H C.On the application of quantitative methods to the study of the structure and history of rocks[J].Quarterly Journal of the Geological Society, 1908, 64(1/4):171-233. [28] HUNT J R.Particle aggregate breakup by fluid shear[M]//MEHTA A J.Estuarine cohesive sediment dynamics.New York:Springer, 1986:85-109. [29] HILL P S, NOWELL A R M.Comparison of two models of aggregation in continental-shelf bottom boundary layers[J].Journal of Geophysical Research:Oceans, 1995, 100(C11):22749-22763. [30] HILL P S, MILLIGAN T G, GEYER W R.Controls on effective settling velocity of suspended sediment in the Eel River flood plume[J].Continental Shelf Research, 2000, 20(16):2095-2111. [31] SUMNER E J, AMY L A, TALLING P J.Deposit structure and processes of sand deposition from decelerating sediment suspensions[J].Journal of Sedimentary Research, 2008, 78(8):529-547. [32] PARSONS J D, BUSH J W M, SYVITSKI J P M.Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J].Sedimentology, 2001, 48(2):465-478. [33] DEMCHENKO N, HE Cheng, RAO Y R, et al.Surface river plume in a large lake under wind forcing:observations and laboratory experiments[J].Journal of Hydrology, 2017, 553:1-12. [34] 彭军, 曾垚, 杨一茗, 等.细粒沉积岩岩石分类及命名方案探讨[J].石油勘探与开发, 2022, 49(1):106-115. PENG Jun, ZENG Yao, YANG Yiming, et al.Discussion on classification and naming scheme of fine-grained sedimentary rocks[J].Petroleum Exploration and Development, 2022, 49(1):106-115. [35] 朱如凯, 李梦莹, 杨静儒, 等.细粒沉积学研究进展与发展方向[J].石油与天然气地质, 2022, 43(2):251-264. ZHU Rukai, LI Mengying, YANG Jingru, et al.Advances and trends of fine-grained sedimentology[J].Oil & Gas Geology, 2022, 43(2):251-264. [36] SAGEMAN B B, MURPHY A E, WERNE J P, et al.A tale of shales:the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J].Chemical Geology, 2003, 195(1/4):229-273. [37] PEDERSEN T F, CALVERT S E.Anoxia vs.productivity:what controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J].AAPG Bulletin, 1990, 74(4):454-466. [38] TYSON R V.The "productivity versus preservation" controversy:cause, flaws, and resolution[M]//HARRIS N B.The deposition of organic-carbon-rich sediments:models, mechanisms, and consequences.Tulsa, Oklahoma:SEPM, 2005, 82:17-33. [39] ALGEO T J, HENDERSON C M, TONG Jinnan, et al.Plankton and productivity during the Permian-Triassic boundary crisis:an analysis of organic carbon fluxes[J].Global and Planetary Change, 2013, 105:52-67. [40] STEPHEN C, PASSEY Q R.Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework[J].AAPG Bulletin, 1993, 77(3):386-401. [41] ARTHUR M A, DEAN W E.Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea[J].Paleoceanography, 1998, 13(4):395-411. [42] STOW A J, SUNNUCKS P, BRISCOE D A, et al.The impact of habitat fragmentation on dispersal of Cunningham's skink (Egernia cunninghami):evidence from allelic and genotypic analyses of microsatellites[J].Molecular Ecology, 2001, 10(4):867-878. [43] HUA Ganlin, WU Songtao, ZHANG Jinyou, et al.Laminar structure and reservoir quality of shales with high clay mineral content in the Qingshan kou Formation, Songliao Basin[J].Energies, 2022, 15(17):6132. [44] 朱星宇.多矿物组分数字岩心的构建与流动模拟[D].青岛:中国石油大学, 2019. ZHU Xingyu.Multi-mineral components digital rock modeling and flow simulation[D].Qingdao:China University of Petroleum (East China), 2019. [45] KENIS P, SKURZYNSKI J, JARY Z, et al.A new methodological approach (QEMSCAN®) in the mineralogical study of Polish loess:guidelines for further research[J].Open Geosciences, 2020, 12(1):342-353. [46] 刘强, 柳少波, 鲁雪松, 等.拉曼光谱在油气地质应用中的研究进展[J].光谱学与光谱分析, 2022, 42(9):2679-2688. LIU Qiang, LIU Shaobo, LU Xuesong, et al.Research progress in the application of raman spectroscopy in petroleum geology[J].Spectroscopy and Spectral Analysis, 2022, 42(9):2679-2688. [47] 鲍芳, 俞凌杰, 芮晓庆, 等.页岩中有机质孔隙非均质性的微观结构及电镜-拉曼联用研究[J].石油实验地质, 2021, 43(5):871-879. BAO Fang, YU Lingjie, RUI Xiaoqing, et al.Microstructure and SEM-Raman study of organic matter pore heterogeneity in shale[J].Petroleum Geology & Experiment, 2021, 43(5):871-879. [48] WILLE G, LEROUGE C, SCHMIDT U.A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman-in-SEM imaging[J].Journal of Microscopy, 2018, 270(3):309-317. [49] 施振生, 董大忠, 王红岩, 等.含气页岩不同纹层及组合储集层特征差异性及其成因——以四川盆地下志留统龙马溪组一段典型井为例[J].石油勘探与开发, 2020, 47(4):829-840. SHI Zhensheng, DONG Dazhong, WANG Hongyan, et al.Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations:a case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J].Petroleum Exploration and Development, 2020, 47(4):829-840. [50] 吴松涛, 朱如凯, 罗忠, 等.中国中西部盆地典型陆相页岩纹层结构与储层品质评价[J].中国石油勘探, 2022, 27(5):62-72. WU Songtao, ZHU Rukai, LUO Zhong, et al.Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China[J].China Petroleum Exploration, 2022, 27(5):62-72. [51] 赵建华, 金之钧, 金振奎, 等.四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境[J].石油学报, 2016, 37(5):572-586. ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al.Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J].Acta Petrolei Sinica, 2016, 37(5):572-586. [52] 刘国恒, 黄志龙, 姜振学, 等.鄂尔多斯盆地延长组湖相页岩纹层发育特征及储集意义[J].天然气地球科学, 2015, 26(3):408-417. LIU Guoheng, HUANG Zhilong, JIANG Zhenxue, et al.The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin[J].Natural Gas Geoscience, 2015, 26(3):408-417. [53] LI Jinbu, WANG Min, FEI Junsheng, et al.Determination of in situ hydrocarbon contents in shale oil plays.Part 2:two-dimensional nuclear magnetic resonance (2D NMR)as a potential approach to characterize preserved cores[J].Marine and Petroleum Geology, 2022, 145:105890. [54] CAMPBELL C V.Lamina, laminaset, bed and bedset[J].Sedimentology, 1967, 8(1):7-26. [55] 王超, 张柏桥, 舒志国, 等.焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义[J].地球科学, 2019, 44(3):972-982. WANG Chao, ZHANG Boqiao, SHU Zhiguo, et al.Shale lamination and its influence on shale reservoir quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J].Earth Science, 2019, 44(3):972-982. [56] 余恩晓.松辽盆地晚白垩世嫩江组一段细粒沉积物沉积环境及年际古气候特征[D].北京:中国地质大学, 2019. YU Enxiao.Depositional environments and inter-annual paleoclimatic characteristics of the fine-grained sedimentary rocks of the first Member of the Nenjiang Formation in the Late Cretaceous Songliao Basin[D].Beijing:China University of Geosciences, 2019. [57] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al.Investigation of the relationship between organic porosity and thermal maturity in the Marcellus shale[R].SPE 144370, 2011. [58] 王羽, 汪丽华, 王建强, 等.基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J].岩矿测试, 2018, 37(3):235-243. WANG Yu, WANG Lihua, WANG Jianqiang, et al.Three-dimension characterization of organic matter pore structures of shale using focused ion beam-scanning electron microscope[J].Rock and Mineral Analysis, 2018, 37(3):235-243. [59] 赵华伟.致密油储层微观孔隙结构及渗流规律研究[D].北京:中国石油大学, 2017. ZHAO Huawei.Study on micro scale pore structure and flow mechanism of tight oil sandstones[D].Beijing:China University of Petroleum, 2017. [60] 郑国伟, 高之业, 黄立良, 等.准噶尔盆地玛湖凹陷二叠系风城组页岩储层润湿性及其主控因素[J].石油与天然气地质, 2022, 43(5):1206-1220. ZHENG Guowei, GAO Zhiye, HUANG Liliang, et al.Wettability of the Permian Fengcheng Formation shale in the Mahu sag, Junggar Basin, and its main control factors[J].Oil & Gas Geology, 2022, 43(5):1206-1220. [61] SHARIFIGALIUK H, MAHMOOD S M, AHMAD M, et al.Comparative analysis of conventional methods for the evaluation of wettability in shales[J].Journal of Petroleum Science and Engineering, 2022, 208:109729. [62] 张顺, 刘惠民, 王敏, 等.东营凹陷页岩油储层孔隙演化[J].石油学报, 2018, 39(7):754-766. ZHANG Shun, LIU Huimin, WANG Min, et al.Pore evolution of shale oil reservoirs in Dongying sag[J].Acta Petrolei Sinica, 2018, 39(7):754-766. [63] 崔景伟, 朱如凯, 崔京钢.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据[J].地质学报, 2013, 87(5):730-736. CUI Jingwei, ZHU Rukai, CUI Jinggang.Relationship of porous evolution and residual hydrocarbon:evidence from modeling experiment with geological constrains[J].Acta Geologica Sinica, 2013, 87(5):730-736. [64] 胡海燕.富有机质Woodford页岩孔隙演化的热模拟实验[J].石油学报, 2013, 34(5):820-825. HU Haiyan.Porosity evolution of the organic-rich shale with thermal maturity increasing[J]. Acta Petrolei Sinica, 2013, 34(5):820-825. [65] WU Songtao, YANG Zhi, ZHAI Xiufen, et al.An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints[J].Marine and Petroleum Geology, 2019, 102:377-390. [66] JIANG Xiaohua, WU Songtao, HOU Lianhua, et al.Porosity evolution in lacustrine organic-matter-rich shales with high claly minerals content[J].Frontiers in Earth Science, 2021, 9:766093. [67] CHALMERS G R L, BUSTIN R M.Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅰ:geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology, 2008, 56(1):1-21. [68] 邹才能, 朱如凯, 白斌, 等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报, 2011, 27(6):1857-1864. ZOU Caineng, ZHU Rukai, BAI Bin, et al.First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica, 2011, 27(6):1857-1864. [69] TAN Jingqiang, HORSFIELD B, FINK R, et al.Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part Ⅲ:mineralogical, lithofacial, petrophysical, and rock mechanical properties[J].Energy & Fuels, 2014, 28(4):2322-2342. [70] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al.Porosity of Devonian and Mississippian New Albany shale across a maturation gradient:insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10):1621-1643. [71] KO L T, LOUCKS R G, ZHANG Tongwei, et al.Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent)mudrocks:results from gold tube pyrolysis experiments[J].AAPG Bulletin, 2016, 100(11):1693-1722. [72] SLATT R M, O'BRIEN N R.Pore types in the barnett and woodford gas shales:contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin, 2011, 95(12):2017-2030. [73] BARUCH E T, KENNEDY M J, LÖHR S C, et al.Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia)[J].AAPG Bulletin, 2015, 99(9):1745-1770. [74] LOUCKS R G, REED R M, RUPPEL S C, et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin, 2012, 96(6):1071-1098. [75] BERNARD S, HORSFIELD B, SCHULZ H M, et al.Geochemical evolution of organic-rich shales with increasing maturity:a STXM and TEM study of the Posidonia shale (Lower Toarcian, northern Germany)[J].Marine and Petroleum Geology, 2012, 31(1):70-89. [76] POMMER M, MILLIKEN K.Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J].AAPG Bulletin, 2015, 99(9):1713-1744. [77] 赵杏媛, 何东博.黏土矿物与油气勘探开发[M].北京:石油工业出版社, 2016. ZHAO Xingyuan, HE Dongbo.Clay mineral and application in oil and gas exploration and development[M].Beijing:Petroleum Industry Press, 2016. [78] HOU Lianhua, MA Weijiao, LUO Xia, et al.Hydrocarbon generation-retention-expulsion mechanism and shale oil producibility of the Permian Lucaogou shale in the Junggar Basin as simulated by semi-open pyrolysis experiments[J].Marine and Petroleum Geology, 2021, 125:104880. [79] 路长春, 陆现彩, 刘显东, 等.基于探针气体吸附等温线的矿物岩石表征技术Ⅳ:比表面积的测定和应用[J].矿物岩石地球化学通报, 2008, 27(1):28-34. LU Changchun, LU Xiancai, LIU Xiandong, et al.The technique of surface characteristics of mineral material based on probe gas adsorption isotherm Ⅳ:measurement and application of specific surface area[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1):28-34. [80] 柳波, 吕延防, 孟元林, 等.湖相纹层状细粒岩特征、成因模式及其页岩油意义——以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J].石油勘探与开发, 2015, 42(5):598-607. LIU Bo, LV Yanfang, MENG Yuanlin, et al.Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration:a case study of Permian Lucaogou Formation in Malang sag, Santanghu Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(5):598-607. [81] 宋岩, 高凤琳, 唐相路, 等.海相与陆相页岩储层孔隙结构差异的影响因素[J].石油学报, 2020, 41(12):1501-1512. SONG Yan, GAO Fenglin, TANG Xianglu, et al.Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J].Acta Petrolei Sinica, 2020, 41(12):1501-1512. [82] SUN Mengdi, YU Bingsong, HU Qinhong, et al.Pore connectivity and tracer migration of typical shales in South China[J].Fuel, 2017, 203:32-46. [83] 罗小平, 吴飘, 赵建红, 等.富有机质泥页岩有机质孔隙研究进展[J].成都理工大学学报:自然科学版, 2015, 42(1):50-59. LUO Xiaoping, WU Piao, ZHAO Jianhong, et al.Study advances on organic pores in organic matter-rich mud shale[J].Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(1):50-59. [84] HOU Lianhua, YU Zhichao, LUO Xia, et al.Key geological factors controlling the estimated ultimate recovery of shale oil and gas:a case study of the Eagle Ford shale, Gulf Coast Basin, USA[J].Petroleum Exploration and Development, 2021, 48(3):762-774. [85] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al.Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J].AAPG Bulletin, 2013, 97(2):177-200. [86] 吴松涛, 朱如凯, 崔京钢, 等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发, 2015, 42(2):167-176. WU Songtao, ZHU Rukai, CUI Jinggang, et al.Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2):167-176. [87] 吉利明, 吴远东, 贺聪, 等.富有机质泥页岩高压生烃模拟与孔隙演化特征[J].石油学报, 2016, 37(2):172-181. JI Liming, WU Yuandong, HE Cong, et al.High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale[J].Acta Petrolei Sinica, 2016, 37(2):172-181. [88] 吴松涛, 邹才能, 朱如凯, 等.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 2015, 40(11):1810-1823. WU Songtao, ZOU Caineng, ZHU Rukai, et al.Reservoir quality characterization of Upper Triassic Chang 7 shale in Ordos Basin.Earth Science, 2015, 40(11):1810-1823. [89] SUN Xianda, TANG Wenhao, YU Xiaodan.The key technology of Micro area visualization in the application of the oil and gas exploration and development[J].Acta Geologica Sinica (English Edition), 2015, 89(s1):405-408. [90] BEHAR F, BEAUMONT V, PENTEADO H L D B, et al.Rock-eval 6 technology:performances and development[J].Oil & Gas Science and Technology, 2001, 56(2):111-134. [91] JARVIE D M.Shale resource systems for oil and gas:part 2-shale-oil resource systems[M]//BREYER J A.Shale reservoirs-giant resources for the 21st Century.Tulsa, Oklahoma:AAPG, 2012:89-119. [92] HU Tao, PANG Xiongqi, JIANG Fujie, et al.Movable oil content evaluation of lacustrine organic-rich shales:methods and a novel quantitative evaluation model[J].Earth-Science Reviews, 2021, 214:103545. [93] LEYTHAEUSER D, KEUSER C, SCHWARK L.Molecular memory effects recording the accumulation history of petroleum reservoirs:a case study of the Heidrun field, offshore Norway[J].Marine and Petroleum Geology, 2007, 24(4):199-220. [94] 钱门辉, 蒋启贵, 黎茂稳, 等.湖相页岩不同赋存状态的可溶有机质定量表征[J].石油实验地质, 2017, 39(2):278-286. QIAN Menhui, JIANG Qigui, LI Maowen, et al.Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences[J].Petroleum Geology & Experiment, 2017, 39(2):278-286. [95] 蒋启贵, 黎茂稳, 钱门辉, 等.不同赋存状态页岩油定量表征技术与应用研究[J].石油实验地质, 2016, 38(6):842-849. JIANG Qigui, LI Maowen, QIAN Menhui, et al.Quantitative characterization of shale oil in different occurrence states and its application[J].Petroleum Geology & Experiment, 2016, 38(6):842-849. [96] 李志明, 刘鹏, 钱门辉, 等.湖相泥页岩不同赋存状态油定量对比——以渤海湾盆地东营凹陷页岩油探井取心段为例[J].中国矿业大学学报, 2018, 47(6):1252-1263. LI Zhiming, LIU Peng, QIAN Menhui, et al.Quantitative comparison of different occurrence oil for lacustrine shale:a case from cored interval of shale oil special drilling wells in Dongying depression, Bohai Bay Basin[J].Journal of China University of Mining & Technology, 2018, 47(6):1252-1263. [97] FLEURY M, ROMERO-SARMIENTO M.Characterization of shales using T1-T2 NMR maps[J].Journal of Petroleum Science and Engineering, 2016, 137:55-62. [98] 王民, 马睿, 李进步, 等.济阳坳陷古近系沙河街组湖相页岩油赋存机理[J].石油勘探与开发, 2019, 46(4):789-802. WANG Min, MA Rui, LI Jinbu, et al.Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang depression, Bohai Bay Basin, China[J].Petroleum Exploration and Development, 2019, 46(4):789-802. [99] ZOU Caineng, JIN Xu, ZHU Rukai, et al.Do shale pore throats have a threshold diameter for oil storage?[J].Scientific Reports, 2015, 5:13619. [100] CAO Huairen, ZOU Yanrong, LEI Yan, et al.Shale oil assessment for the Songliao Basin, Northeastern China, using oil generation-sorption method[J].Energy & Fuels, 2017, 31(5):4826-4842. [101] WANG Min, SHERWOOD N, LI Zhongsheng, et al.Shale oil occurring between salt intervals in the Dongpu depression, Bohai Bay Basin, China[J].International Journal of Coal Geology, 2015, 152:100-112. [102] KAUSIK R, FELLAH K, RYLANDER E, et al.NMR relaxometry in shale and implications for logging[J].Petrophysics, 2016, 57(4):339-350. [103] VENKATARAMANAN L, EVIRGEN N, ALLEN D F, et al.An unsupervised learning algorithm to compute fluid volumes from NMR T1-T2 logs in unconventional reservoirs[J].Petrophysics, 2018, 59(5):617-632. [104] 何文渊, 蒙启安, 冯子辉, 等.松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J].石油学报, 2022, 43(1):1-14. HE Wenyuan, MENG Qian, FENG Zihui, et al.In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J].Acta Petrolei Sinica, 2022, 43(1):1-14. [105] ZHANG Tongwei, WIGGINS-CAMACHO J, RUPPEL S C, et al.Integrated hydrocarbon geochemical characterization and pore size distribution analysis for Bakken shales, Williston Basin, USA[C]//AAPG Annual Convention and Exhibition.Pittsburgh, Pennsylvania:AAPG, 2013:19-22. [106] JARVIE D M, HILL R J, RUBLE T E, et al.Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91(4):475-499. [107] RICKMAN R, MULLEN M, PETRE E, et al.A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett shale[R].SPE 115258, 2008. [108] 李庆辉, 陈勉, 金衍, 等.页岩气储层岩石力学特性及脆性评价[J].石油钻探技术, 2012, 40(4):17-22. LI Qinghui, CHEN Mian, JIN Yan, et al.Rock mechanical properties and brittleness evaluation of shale gas reservoir[J].Petroleum Drilling Techniques, 2012, 40(4):17-22. [109] 赵金洲, 许文俊, 李勇明, 等.页岩气储层可压性评价新方法[J].天然气地球科学, 2015, 26(6):1165-1172. ZHAO Jinzhou, XU Wenjun, LI Yongming, et al.A new method for fracability evaluation of shale-gas reservoirs[J].Natural Gas Geoscience, 2015, 26(6):1165-1172. [110] 郭天魁, 张士诚, 葛洪魁.评价页岩压裂形成缝网能力的新方法[J].岩土力学, 2013, 34(4):947-954. GUO Tiankui, ZHANG Shicheng, GE Hongkui.A new method for evaluating ability of forming fracture network in shale reservoir[J].Rock and Soil Mechanics, 2013, 34(4):947-954. [111] YASUHARA H, ELSWORTH D.Compaction of a rock fracture moderated by competing roles of stress corrosion and pressure solution[J].Pure and Applied Geophysics, 2008, 165(7):1289-1306. [112] WU Songtao, ZHAI Xiufen, YANG Zhi, et al.Characterization of fracture Formation in organic-rich shales-an experimental and real time study of the Permian Lucaogou Formation, Junggar Basin, northwestern China[J].Marine and Petroleum Geology, 2019, 107:397-406. [113] WU Songtao, YANG Zhi, PAN Songqi, et al.Three-dimensional imaging of fracture propagation in tight sandstones of the Upper Triassic Chang 7 Member, Ordos Basin, northern China[J].Marine and Petroleum Geology, 2020, 120:104501. [114] 唐颖, 邢云, 李乐忠, 等.页岩储层可压裂性影响因素及评价方法[J].地学前缘, 2012, 19(5):356-363. TAGNG Ying, XING Yun, LI Lezhong, et al.Influence factors and evaluation methods of the gas shale fracability[J].Earth Science Frontiers, 2012, 19(5):356-363. [115] MIKHALTSEVITCH V, LEBEDEV M, GUREVICH B.A laboratory study of the elastic anisotropy in the Mancos shale at seismic frequencies[G]//SICKING C, FERGUSON J.SEG Technical Program Expanded Abstracts 2016.Dallas, Texas:Society of Exploration Geophysicists, 2016:3174-3178. [116] MAXWELL S.Microseismic hydraulic fracture imaging:the path toward optimizing shale gas production[J].The Leading Edge, 2011, 30(3):340-346. [117] KASHIKAR S, SHOJAEI H, DUNCAN P, et al.Seeking real value:quantitative estimation of permeability enhancement, production volumes, and drainage area from microseismic data[G]//SICKING C, FERGUSON J.SEG Technical Program Expanded Abstracts 2016.Dallas, Texas:Society of Exploration Geophysicists, 2016:2694-2698. [118] LI Guoxin, XIAN Chenggang, LIU He.A "one engine with six gears" system engineering methodology for the economic development of unconventional oil and gas in China[J].Engineering, 2022, 18(11):105-115. |
[1] | Xiong Yu, Guo Meijuan, Wang Linghong, Wu Daoming, Chen Meihua, Li Mingqiu, Deng Bo, Zhang Rui, Lu Jungang, Zeng Deming. Characteristics and movability evaluation of shale oil in Jurassic Da’anzhai Member, Sichuan Basin [J]. Acta Petrolei Sinica, 2024, 45(5): 817-843. |
[2] | Dou Lirong, Li Dawei, Wen Zhixin, Wang Zhaoming, Mi Shiyun, Zhang Qian. History and outlook of global oil and gas resources evaluation [J]. Acta Petrolei Sinica, 2022, 43(8): 1035-1048. |
[3] | Gao Wenjun, Cheng Long, Zhang Peng, Yuan Quan, Wang Wanli. Establishment and application of a new generalized mathematical model of water cut change law [J]. Acta Petrolei Sinica, 2022, 43(7): 1007-1015,1034. |
[4] | Zhang Kang, Zhang Liqin, Liu Dongmei. Situation of China's oil and gas exploration and development in recent years and relevant suggestions [J]. Acta Petrolei Sinica, 2022, 43(1): 15-28,111. |
[5] | You Lijun, Kang Yili, Zhou Yang, Chen Qiang, Cheng Qiuyang, Xu Jieming, Chen Yang. Concept,mechanism and significance of oxidation sensitivity of oil and gas reservoirs [J]. Acta Petrolei Sinica, 2021, 42(2): 186-197. |
[6] | Yang Zhi, Zou Caineng, Chen Jianjun, Wu Songtao, Pan Songqi, Ma Feng, Li Jiarui, Jiang Wenqi, Wang Xiaoni. “Exploring petroleum inside or near the source kitchen”: innovations in petroleum geology theory and reflections on hydrocarbon exploration in key fields [J]. Acta Petrolei Sinica, 2021, 42(10): 1310-1324. |
[7] | Zhang Shengfei, Sun Xinge, Gou Yan, Zhang Zhongyi, Wang Hongzhuang, Zhou Xiaoyi, Xie Yangbo, Lü Bolin. Application status and thinking of flow control devices in SAGD [J]. Acta Petrolei Sinica, 2021, 42(10): 1395-1404. |
[8] | Jiang Zhenxue, Li Tingwei, Gong Houjian, Jiang Tao, Chang Jiaqi, Ning Chuanxiang, Su Siyuan, Chen Weitao. Characteristics of low-mature shale reservoirs in Zhanhua sag and their influence on the mobility of shale oil [J]. Acta Petrolei Sinica, 2020, 41(12): 1587-1600. |
[9] | Li Yaohua, Song Yan, Xu Xingyou, Bai Jing, Chen Shan, Liu Weibin. Wettability and spontaneous imbibition characteristics of the tuffaceous shale reservoirs in the Member 7 of Yanchang Formation,Ordos Basin [J]. Acta Petrolei Sinica, 2020, 41(10): 1229-1237. |
[10] | Zhu Yan, Gao Wenbin, Li Ruisheng, Li Yiqiang, Yuan Jingshu, Kong Debin, Liu Jiyu, Yue Zengcun. Action laws and application effect of enhanced oil recovery by adjustable-mobility polymer flooding [J]. Acta Petrolei Sinica, 2018, 39(2): 189-200,246. |
[11] | Kang Yongshang, Li Zhe, Wang Jin, Sun Liangzhong, Mao Delei, Sun Hansen, Gu Jiaoyang. Coalbed methane mobility and primary drainage rate control strategy in different coal-rank blocks [J]. Acta Petrolei Sinica, 2018, 39(10): 1162-1174. |
[12] | Liang Tao, Chang Yuwen, Xu Lu, Wang Rui, Hu Jinghong, Li Yuhong, Xu Feng. Top ten causes of unconventional oil and gas resources boom in North America and its influence on regional supply and demand [J]. ACTA PETROLEI SINICA, 2014, 35(5): 890-900. |
[13] | Jia Chengzao, Zheng Min, Zhang Yongfeng. Four important theoretical issues of unconventional petroleum geology [J]. ACTA PETROLEI SINICA, 2014, 35(1): 1-10. |
[14] | JIA Chengzao. Several important issues about current oil and gas exploration in China [J]. ACTA PETROLEI SINICA, 2012, 33(S1): 6-13. |
[15] | LIANG Shijun HUANG Zhilong LIU Bo YAN Liecan LI Huaming MA Jian. Formation mechanism and enrichment conditions of Lucaogou Formation shale oil from Malang sag, Santanghu Basin [J]. Editorial office of ACTA PETROLEI SINICA, 2012, 33(4): 588-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 100724
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn