[1] DU Yang, FAN Tailiang, MACHEL H G, et al.Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe oilfield, Tarim Basin, NW China:several limitations from petrology, geochemistry, and fluid inclusions[J].Marine and Petroleum Geology, 2018, 91:43-70. [2] DENG Shang, LI Huili, ZHANG Zhongpei, et al.Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J].AAPG Bulletin, 2019, 103(1):109-137. [3] DENG Shang, ZHAO Rui, KONG Qiangfu, et al.Two distinct strike-slip fault networks in the Shunbei area and its surroundings, Tarim Basin:hydrocarbon accumulation, distribution, and controlling factors[J].AAPG Bulletin, 2022, 106(1):77-102. [4] 焦方正.塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J].石油与天然气地质, 2018, 39(2):207-216. JIAO Fangzheng.Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J].Oil & Gas Geology, 2018, 39(2):207-216. [5] 杨鑫, 平宏伟, 雷涛, 等.鄂尔多斯盆地泾河油田走滑断裂带油气成藏特征及控藏机制[J].地球科学, 2023, 48(6):2324-2341. YANG Xin, PING Hongwei, LEI Tao, et al.Hydrocarbon accumulation characteristics and controlling mechanism of strike-slip faults in Jinghe oilfield, Ordos Basin[J].Earth Science, 2023, 48(6):2324-2341. [6] 邹才能, 侯连华, 陶士振, 等.新疆北部石炭系大型火山岩风化体结构与地层油气成藏机制[J].中国科学:地球科学, 2011, 41(11): 1613-1626. ZOU Caineng, HOU Lianhua, TAO Shizhen, et al.Hydrocarbon accumulation mechanism and structure of large-scale volcanic weathering crust of the Carboniferous in northern Xinjiang, China[J].Science China Earth Sciences, 2012, 55(2):221-235. [7] 郑和荣, 刘忠群, 徐士林, 等.四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J].石油与天然气地质, 2021, 42(4):765-783. ZHENG Herong, LIU Zhongqun, XU Shilin, et al.Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin[J].Oil & Gas Geology, 2021, 42(4):765-783. [8] 赵政璋, 杜金虎, 邹才能, 等.大油气区地质勘探理论及意义[J].石油勘探与开发, 2011, 38(5):513-522. ZHAO Zhengzhang, DU Jinhu, ZOU Caineng, et al.Geological exploration theory for large oil and gas provinces and its significance[J].Petroleum Exploration and Development, 2011, 38(5):513-522. [9] 刘宝增, 漆立新, 李宗杰, 等.顺北地区超深层断溶体储层空间雕刻及量化描述技术[J].石油学报, 2020, 41(4):412-420. LIU Baozeng, QI Lixin, LI Zongjie, et al.Spatial characterization and quantitative description technology for ultra-deep fault-karst reservoirs in the Shunbei area[J].Acta Petrolei Sinica, 2020, 41(4):412-420. [10] 余淳梅, 郑建平, 唐勇, 等.准噶尔盆地五彩湾凹陷基底火山岩储集性能及影响因素[J].地球科学, 2004, 29(3):303-308. YU Chunmei, ZHENG Jianping, TANG Yong, et al.Reservoir properties and effect factors on volcanic rocks of basement beneath Wucaiwan depression, Junggar Basin[J].Earth Science, 2004, 29(3):303-308. [11] KIM Y S, PEACOCK D C P, SANDERSON D J.Fault damage zones[J].Journal of Structural Geology, 2004, 26(3):503-517. [12] 李映涛, 邓尚, 张继标, 等.深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式:以塔里木盆地顺北4 号断裂带为例[J].地学前缘, 2023, 30(6):80-94. LI Yingtao, DENG Shang, ZHANG Jibiao, et al.Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control:a case study in Shunbei, Tarim Basin[J].Earth Science Frontiers.2023, 30(6):80-94. [13] 马庆佑, 曾联波, 徐旭辉, 等.塔河油田奥陶系走滑断裂体系特征及成因机制[J].地质学报, 2023, 97(2):496-506. MA Qingyou, ZENG Lianbo, XU Xuhui, et al.Characteristics and genetic mechanism of the strike-slip fault system in the Ordovician of the Tahe oilfield[J].Acta Geologica Sinica, 2023, 97(2):496-506. [14] 漆立新.塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J].中国石油勘探, 2016, 21(3):38-51. QI Lixin.Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J].China Petroleum Exploration, 2016, 21(3):38-51. [15] 刘宏, 马腾, 谭秀成, 等.表生岩溶系统中浅埋藏构造-热液白云岩成因——以四川盆地中部中二叠统茅口组为例[J].石油勘探与开发, 2016, 43(6):916-927. LIU Hong, MA Teng, TAN Xiucheng, et al.Origin of structurally controlled hydrothermal dolomite in epigenetic karst system during shallow burial:an example from Middle Permian Maokou Formation, central Sichuan Basin, SW China[J].Petroleum Exploration and Development, 2016, 43(6):916-927. [16] XIAO Di, TAN Xiucheng, XI Aihua, et al.An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation, southern Sichuan Basin, SW China[J].Marine and Petroleum Geology, 2016, 72:218-233. [17] 胡安平, 潘立银, 郝毅, 等.四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布[J].海相油气地质, 2018, 23(2):39-52. HU Anping, PAN Liyin, HAO Yi, et al.Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China[J].Marine Origin Petroleum Geology, 2018, 23(2):39-52. [18] 黎霆, 诸丹诚, 杨明磊, 等.热液活动对四川盆地中西部地区二叠系茅口组白云岩的影响[J].石油与天然气地质, 2021, 42(3):639-651. LI Ting, ZHU Dancheng, YANG Minglei, et al.Influence of hydrothermal activity on the Maokou Formation dolostone in the central and western Sichuan Basin[J].Oil & Gas Geology, 2021, 42(3):639-651. [19] 何发岐, 齐荣, 袁春艳, 等.鄂尔多斯盆地南部地区断裂构造与油气成藏关系再认识——以彬长地区为例[J].地球科学, 2024, 49(11): 4082-4097. HE Faqi, QI Rong, YUAN Chunyan, et al.Further understanding of the relationship between fault characteristic and hydrocarbon accumulation in Binchang area, Ordos Basin[J].Earth Science, 2024, 49(11):4082-4097. [20] 张威, 杨明慧, 李春堂, 等.鄂尔多斯盆地大牛地区块板内走滑断裂构造特征及演化[J].地球科学, 2023, 48(6):2267-2280. ZHANG Wei, YANG Minghui, LI Chuntang, et al.Structural characteristics and evolution of intraplate strike-slip faults in Daniudi block, Ordos Basin[J].Earth Science, 2023, 48(6):2267-2280. [21] 吕文雅, 曾联波, 周思宾, 等.鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素——以红河油田长8储层为例[J].天然气地球科学, 2020, 31(1):37-46. LV Wenya, ZENG Lianbo, ZHOU Sibin, et al.Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin:case study of the eighth member of the Yanchang Formation in Honghe oilfield[J].Natural Gas Geoscience, 2020, 31(1):37-46. [22] XI Kelai, CAO Yingchang, LIU Keyu, et al.Diagenesis of tight sandstone reservoirs in the Upper Triassic Yanchang Formation, southwestern Ordos Basin, China[J].Marine and Petroleum Geology, 2019, 99:548-562. [23] ZHAO Wentao, HOU Guiting.Fracture prediction in the tight-oil reservoirs of the Triassic Yanchang Formation in the Ordos Basin, northern China[J].Petroleum Science, 2017, 14(1):1-23. [24] WANG Ying, ZHANG Keyin, GAN Qigang, et al.Fracture development characteristics in the Upper Triassic Xujiahe Formation, western Sichuan depression (China)[J].Journal of Petroleum Science and Engineering, 2015, 135:542-551. [25] YUE Dali, WU Shenghe, XU Zhangyou, et al.Reservoir quality, natural fractures, and gas productivity of Upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China[J].Marine and Petroleum Geology, 2018, 89(2):370-386. [26] 黄仁春, 刘若冰, 刘明, 等.川东北通江—马路背地区须家河组断缝体储层特征及成因[J].石油与天然气地质, 2021, 42(4):873-883. HUANG Renchun, LIU Ruobing, LIU Ming, et al.Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation, Tongjiang-Malubei area, northeastern Sichuan Basin[J].Oil & Gas Geology, 2021, 42(4):873-883. [27] 王爱, 钟大康, 刘忠群, 等.川东北元坝西地区须三段钙屑致密砂岩储层成岩作用与孔隙演化[J].现代地质, 2020, 34(6):1193-1204. WANG Ai, ZHONG Dakang, LIU Zhongqun, et al.Diagenesis and porosity evolution of calcareous sandstone reservoirs of Xu-3 Member in western Yuanba of northeastern Sichuan Basin, China[J].Geoscience, 2020, 34(6):1193-1204. [28] 任杰, 姜淑霞, 罗周亮, 等.通南巴气田须家河组致密砂岩储层特征及分类评价[J].断块油气田, 2023, 30(6):914-924. REN Jie, JIANG Shuxia, LUO Zhouliang, et al.Characteristics and classification evaluation of tight sandstone reservoir in Xujiahe Formation of Tongnanba gas field[J].Fault-Block Oil & Gas Field, 2023, 30(6):914-924. [29] BALME M R, ROCCHI V, JONES C, et al.Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell[J].Journal of Volcanology and Geothermal Research, 2004, 132(2/3):159-172. [30] WANG Yong, YANG Renchao, SONG Mingshui, et al.Characteristics, controls and geological models of hydrocarbon accumulation in the Carboniferous volcanic reservoirs of the Chunfeng oilfield, Junggar Basin, northwestern China[J].Marine and Petroleum Geology, 2018, 94, 65-79. [31] 张奎华, 林会喜, 张关龙, 等.哈山构造带火山岩储层发育特征及控制因素[J].中国石油大学学报(自然科学版), 2015, 39(2):16-22. ZHANG Kuihua, LIN Huixi, ZHANG Guanlong, et al.Characteristics and controlling factors of volcanic reservoirs of Hala’alate mountains tectonic belt[J].Journal of China University of Petroleum, 2015, 39(2):16-22. [32] 李学良, 林会喜, 石好果, 等.车排子地区石炭系火山岩储层发育特征及控制因素[J].西安石油大学学报(自然科学版), 2017, 32(6): 1-9. LI Xueliang, LIN Huixi, SHI Haoguo, et al.Development characteristics and control factors of Carboniferous volcanic reservoir in Chepaizi area[J].Journal of Xi’an Shiyou University (Natural Science Edition), 2017, 32(6):1-9. [33] BILLI A, SALVINI F, STORTI F.The damage zone-fault core transition in carbonate rocks:implications for fault growth, structure and permeability[J].Journal of Structural Geology, 2003, 25(11):1779-1794. [34] 漆立新.塔里木盆地顺北超深断溶体油藏特征与启示[J].中国石油勘探, 2020, 25(1):102-111. QI Lixin.Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J].China Petroleum Exploration, 2020, 25(1):102-111. [35] 吕海涛, 韩俊, 张继标, 等.塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J].石油实验地质, 2021, 43(1):14-22. LV Haitao, HAN Jun, ZHANG Jibiao, et al.Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J].Petroleum Geology & Experiment, 2021, 43(1):14-22. [36] 李 映涛, 漆立新, 张哨楠, 等.塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J].石油学报, 2019, 40(12):1470-1484. LI Yingtao, QI Lixin, ZHANG Shaonan, et al.Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J].Acta Petrolei Sinica, 2019, 40(12):1470-1484. [37] SALLER A H, HENDERSON N.Distribution of porosity and permeability in platform dolomites:insight from the Permian of west Texas[J].AAPG Bulletin, 1998, 82(8):1528-1550. [38] WARREN J.Dolomite:occurrence, evolution and economically important associations[J].Earth-Science Reviews, 2000, 52(1/2/3): 1-81. [39] SUN S Q.Dolomite reservoirs:porosity evolution and reservoir characteristics[J].AAPG Bulletin, 1995, 79(2):186-204. [40] MACHEL H G.Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate aquifers[J].Hydrogeology Journal, 1999, 7(1):94-107. |