石油学报 ›› 2016, Vol. 37 ›› Issue (S2): 56-63.DOI: 10.7623/syxb2016S2006

• 地质勘探 • 上一篇    下一篇

全方位高密度单点接收地震采集技术

翟桐立1, 张洪军2, 祝文亮1, 曹明强2, 卢刚臣3, 王仁康3, 姚建军1, 蔡爱兵1   

  1. 1. 中国石油大港油田公司 天津 300280;
    2. 中国石油集团东方地球物理勘探有限责任公司大港物探处 天津 300280;
    3. 中国石油集团东方地球物理勘探有限责任公司地球物理研究院大港分院 天津 300280
  • 收稿日期:2016-07-11 修回日期:2016-11-29 出版日期:2016-12-30 发布日期:2017-03-08
  • 通讯作者: 翟桐立,男,1965年4月生,1987年获大庆石油学院学士学位,现为中国石油大港油田公司勘探开发研究院高级工程师,主要从事地震勘探采集方法研究和项目管理工作。Email:zhaitli@petrochina.com.cn
  • 作者简介:翟桐立,男,1965年4月生,1987年获大庆石油学院学士学位,现为中国石油大港油田公司勘探开发研究院高级工程师,主要从事地震勘探采集方法研究和项目管理工作。Email:zhaitli@petrochina.com.cn
  • 基金资助:

    中国石油天然气股份有限公司科技专项“大港油区大油气田勘探开发关键技术研究(2014E-06-08)”资助。

Full-azimuth high-density single-point receiving technology for seismic acquisition

Zhai Tongli1, Zhang Hongjun2, Zhu Wenliang1, Cao Mingqiang2, Lu Gangchen3, Wang Renkang3, Yao Jianjun1, Cai Aibing1   

  1. 1. PetroChina Dagang Oilfield Company, Tianjin 300280, China;
    2. Dagang Department, CNPC Geophysical Company Limited, Tianjin 300280, China;
    3. Dagang Branch of Geophysical Research Institute, CNPC Geophysical Company Limited, Tianjin 300280, China
  • Received:2016-07-11 Revised:2016-11-29 Online:2016-12-30 Published:2017-03-08

摘要:

近年来,为满足小断距、低幅度构造和薄互储层勘探对地震成像精度及分辨率的要求,宽方位、高密度地震勘探采集技术得到持续的攻关。宽方位地震资料为不同角度的储层研究提供了可能,缩小面元尺寸、加密空间和时间域的数据采集密度,增加了目的层的有效覆盖次数,在提高资料信噪比的基础上提高地震资料的纵横向分辨率。在对信噪比、分辨率和空间采样等几个关键因素分析的基础上,论述了全方位高密度三维观测系统设计方法。对单点与组合检波器接收的优缺点、综合效果与效率进行了分析:长期以来,为抵抗噪音、提高地震能量和信噪比,地震采集接收技术研究侧重于组内距、组合基距、组合图形的比较。组合接收虽然提高了地震原始资料的信噪比,但造成的地震波失真也较大。而单点接收的地震波动态范围更大、频带范围更宽、地震分辨率也较高,适合高密度、小面元目标勘探的精细成像,并且可以通过高覆盖次数提高信噪比。大港油田于2014-2015年部署了针对致密储层的全方位、高密度单点接收采集试验,观测系统采用了10 m×10 m的面元、横纵比为1.0、炮道密度达到361万道,获得了高密度地震资料满覆盖面积56 km2。通过与常规三维地震资料的对比,展示了全方位高密度单点采集地震资料在薄互储层研究、致密储层各向异性分析等方面的潜力。

关键词: 全方位, 高密度, 单点接收, 观测系统参数设计, 道密度, 面元属性分析, 覆盖次数

Abstract:

To fulfill the requirements for seismic data imaging accuracy and resolution of minor fault throw, low amplitude structure and thin inter-bedding reservoirs, the wide-azimuth high-density seismic exploration acquisition technology has been developed constantly in recent years. Wide-azimuth seismic data provide a possibility for studying the multi-azimuth reservoirs. However, the effective coverage times of target layers are increased by reducing the bin size and increasing the data acquisition density in space and time domains. Meanwhile, based on increasing the signal-to-noise ratio(SNR), the vertical and horizontal resolutions of seismic data are improved as well as the accuracy of information. Through analyzing SNR, resolution, spatial sampling and other key factors, this paper presents the full-azimuth high-density 3D geometry design method, and analyzes the advantages, disadvantages, comprehensive effects and efficiencies of single-point geophone receiving and array receiving. For a long period, in order to resist noise and improve seismic energy and SNR, the research on seismic acquisition receiving technology is always focusing on the intra-group distance, array length, composite graphics and other aspects. Array receiving is an effective way to improve seismic SNR, but also causes great seismic wave distortion. However, the single-point receiving method has large seismic dynamic range, wide frequency scope and high seismic resolution, which is more suitable for the precise imaging of high-density and small-bin-size target reservoirs. In addition, the seismic SNR can be improved by more coverage times. In Dagang Oilfield, the full-azimuth high-density single-point receiving acquisition experiments were arranged for tight reservoirs in 2014-2015. The used observation system was designed with a bin size of 10 m×10 m, vertical and horizontal ratio of 1.0 and shot density of 360 million, so as to obtain the high-accuracy seismic data full-coverage area of 56 km2. Through comparing with conventional 3D seismic data, it is presented that the full-azimuth high-density single-point receiving seismic data have potential in the research of thin inter-bedding reservoir, anisotropic analysis of tight reservoir and other aspects.

Key words: full azimuth, high density, single-point receiving, observation system parameter design, traced density, bin attribute analysis, coverage times

中图分类号: