石油学报 ›› 2022, Vol. 43 ›› Issue (10): 1500-1508.DOI: 10.7623/syxb202210012

• 石油工程 • 上一篇    下一篇

超深水浅层建井关键技术创新与实践

杨进1, 傅超1, 刘书杰2, 张伟国3, 谢仁军4, 吴怡4   

  1. 1. 中国石油大学(北京)安全与海洋工程学院 北京 102249;
    2. 中海石油(中国)有限公司海南分公司 海南海口 570000;
    3. 中海石油(中国)有限公司深圳分公司 广东深圳 518000;
    4. 中海油研究总院有限责任公司 北京 100028
  • 收稿日期:2022-01-01 修回日期:2022-06-11 出版日期:2022-10-25 发布日期:2022-11-05
  • 通讯作者: 杨进,男,1966年3月生,2004年获中国矿业大学(北京)博士学位,现为中国石油大学(北京)教授、博士生导师,主要从事石油工程和海洋工程领域的教学和科研工作。
  • 作者简介:杨进,男,1966年3月生,2004年获中国矿业大学(北京)博士学位,现为中国石油大学(北京)教授、博士生导师,主要从事石油工程和海洋工程领域的教学和科研工作。Email:yjin@cup.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(No.51774301)资助。

Key technological innovation and practice of well construction in ultra-deepwater shallow formations

Yang Jin1, Fu Chao1, Liu Shujie2, Zhang Weiguo3, Xie Renjun4, Wu Yi4   

  1. 1. College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China;
    2. Hainan Branch, CNOOC China Limited, Hainan Haikou 570000, China;
    3. Shenzhen Branch, CNOOC China Limited, Guangdong Shenzhen 518000, China;
    4. CNOOC Research Institute Co., Ltd., Beijing 100028, China
  • Received:2022-01-01 Revised:2022-06-11 Online:2022-10-25 Published:2022-11-05

摘要: 中国南海油气资源丰富,但70 %分布在深水区域。深水钻井实践表明,60 %的钻井事故源自海底以下几百米的未成岩浅层,因此浅层建井是整个深水钻井成功的关键。针对超深水浅层存在海底土力学参数不易获取、浅层地质灾害精确预测困难、井身结构精准设计和作业安全控制不易等难题,从理论模型、室内模拟实验和现场实践等方面开展了研究。根据土体固结理论及声速梯度特征,基于浅层地震剖面数据,创建了深水浅层土体密度、抗剪强度关键参数预测模型。基于超深水模拟实验装置,建立了水下井口实时承载力模型,形成了深水浅层精准井身结构设计方法。基于地震纵波在深水浅部含气或含水地层中产生不同声速响应的特征,建立了含浅层气、浅水流地层纵波速度随水深、地层密度的双参数方程,形成了超深水浅层地质灾害预测模型。基于浅层喷射下表层导管的原理,提出了"表层导管+表层套管"二合一复合钻井作业模式。研究成果成功应用于西太平洋第一口超深水井——荔湾22-1-1井(水深为2 619.35 m)。其中,南海超深水表层导管下入深度达100.1 m,浅层表层导管安装时间仅为2.25 h,保障了荔湾22-1-1井的高效、安全作业。

关键词: 南海, 超深水, 深水浅层, 钻井设计, 安全控制

Abstract: South China Sea is rich in oil and gas resources, 70 % of which are distributed in deepwater areas. The deepwater drilling practice shows that 60 % of drilling accidents are derived from the shallow unformed rock formations at a depth of several hundred meters below the seafloor, so well construction in shallow formations is the key to the success of the whole deepwater drilling. In view of the challenges of obtaining subsea geomechanical parameters, accurate prediction of shallow geological hazards, precise design of well structure and operational safety control in ultra-deepwater shallow formations, a study has been carried out in terms of theoretical models, laboratory simulation experiments and field practice. Based on soil consolidation theory and sound velocity gradient characteristics, a prediction model of the key parameters of deepwater shallow soil density and shear strength was created based on shallow seismic profile data. Using the ultra-deepwater simulation experimental device, a real-time load-bearing capacity model for underwater wellhead was established, thus obtaining an accurate design method for well structure in deepwater shallow formations. Based on the characteristic that seismic longitudinal waves generate different sound velocity responses in deepwater shallow gas- or water-bearing strata, a two-parameter equation of longitudinal wave velocity changing with water depth and stratigraphic density was established, thus obtaining a prediction model for geological hazards in ultra-deepwater shallow formations. Based on the principle of surface conductor under shallow injection, this paper proposes a two-in-one composite drilling mode of "surface conductor+surface casing". These results have been successfully applied to the No.1 ultra-deepwater well in West Pacific Ocean, i.e., Well Liwan 22-1-1(water depth of 2 619.35 m). The ultra-deepwater surface conductor in South China Sea can be lowered to a depth of 100.1 m, and the conductor installation time is only 2.25 h, able to guarantee the efficient and safe operation in the Well Liwan 22-1-1.

Key words: South China Sea, ultra-deepwater, deepwater shallow formation, drilling design, safety control

中图分类号: