石油学报 ›› 2019, Vol. 40 ›› Issue (10): 1233-1243.DOI: 10.7623/syxb201910008

• 油田开发 • 上一篇    下一篇

渝西地区海相页岩储层孔隙有效性评价

蒋裕强1,2,3, 刘雄伟1, 付永红1,3, 陈虎4, 张海杰5, 燕军6, 陈超7, 谷一凡1   

  1. 1. 西南石油大学地球科学与技术学院 四川成都 610500;
    2. 四川省页岩气资源与环境协同创新中心 四川成都 610500;
    3. 中国石油非常规重点实验室储层评价实验室 四川成都 610500;
    4. 中国石油西南油气田公司开发事业部 四川成都 610051;
    5. 重庆页岩气勘探开发有限责任公司 重庆 401120;
    6. 苏州泰纽测试服务有限公司 江苏苏州 215163;
    7. 四川长宁天然气开发有限责任公司 四川成都 610051
  • 收稿日期:2019-05-10 修回日期:2019-09-16 出版日期:2019-10-25 发布日期:2019-11-09
  • 通讯作者: 蒋裕强,男,1963年12月生,1985年获西南石油学院学士学位,1993年获西南石油学院硕士学位,现为西南石油大学地球科学与技术学院教授,主要从事非常规油气地质、复杂碳酸盐岩储层地质及开发地质研究工作。Email:xnsyjyq3055@126.com
  • 作者简介:蒋裕强,男,1963年12月生,1985年获西南石油学院学士学位,1993年获西南石油学院硕士学位,现为西南石油大学地球科学与技术学院教授,主要从事非常规油气地质、复杂碳酸盐岩储层地质及开发地质研究工作。Email:xnsyjyq3055@126.com
  • 基金资助:

    国家自然科学基金项目(No.51674044)、中国石油天然气集团公司科学研究与技术开发项目(2016A-3603)和高等学校学科创新引智计划(111计划)项目(D18016)资助。

Evaluation of effective porosity in marine shale reservoir,western Chongqing

Jiang Yuqiang1,2,3, Liu Xiongwei1, Fu Yonghong1,3, Chen Hu4, Zhang Haijie5, Yan Jun6, Chen Chao7, Gu Yifan1   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Sichuan Chengdu 610500, China;
    2. Sichuan Shale Gas Resources and Environment Innovation and Synergy Center, Sichuan Chengdu 610500, China;
    3. Resources Evaluation Laboratory, PetroChina Key Laboratory of Unconventional Oil and Gas, Sichuan Chengdu 610500, China;
    4. Development Division of PetroChina Southwest Oil and Gas Field Company, Sichuan Chengdu 610051, China;
    5. Chongqing Shale Gas Exploration and Development Co. Ltd., Chongqing 401120, China;
    6. Suzhou Testniumag Corporation Co. Ltd., Jiangsu Suzhou 215163, China;
    7. Sichuan Changning Nature Gas Development Co. Ltd., Sichuan Chengdu 610051, China
  • Received:2019-05-10 Revised:2019-09-16 Online:2019-10-25 Published:2019-11-09

摘要:

基于页岩储层中毛细管束缚水、黏土束缚水、黏土结合水和干酪根核磁共振响应特征,开展了页岩储层孔隙有效性评价研究。选取渝西地区Z202井、Z201井3 500 m以深页岩样品开展渐变离心与渐变干燥处理后的核磁共振实验,确定了页岩储层中毛细管束缚水、黏土束缚水和基底信号的T2截止值(T2cutoff),分别为0.98~1.08 ms,0.25~0.55 ms,0.12~0.20 ms。3个不同的T2cutoff逐渐减小,对应的可动水饱和度、毛细管束缚水饱和度和黏土束缚水饱和度分别在29.72%~48.12%、10.25%~20.19%和12.97%~15.68%;200℃干燥后的岩心核磁共振T1-T2图谱揭示页岩中存在不连通孔隙;通过定量划分页岩储层孔隙系统,确定了有效孔隙下限的核磁共振T2cutoff(平均值为0.4 ms),对应的孔径下限为4.25 nm。据此,建立了识别页岩储层孔隙流体类型、划分页岩储层孔隙系统、评价页岩储层孔隙有效性、确定储层有效孔径下限等系列页岩储层的有效性评价技术和方法。

关键词: 页岩储层, 孔隙系统, 不连通孔隙, 有效孔径下限, 流体类型, 核磁共振

Abstract:

Based on the Nuclear Magnetic Resonance (NMR)response characteristics of capillary bond water, clay bound water, clay hydration water and kerogen in shale reservoir, this study carries out an evaluation research on the effective porosity in shale. The samples were obtained from the shale reservoir buried deeper than 3 500 m in Well Z202 and Z201, on which a NMR experiment was performed after gradient centrifugation and gradual drying of the shale samples. The results indicate that the T2cutoff of capillary bound water, clay bound water and basement signal is within the range of 0.98-1.08 ms, 0.25-0.55 ms and 0.12-0.20 ms, respectively. The three T2cutoff values decrease gradually, corresponding to the mobile water saturation, capillary bond water saturation and clay bound water saturation of 29.72% -48.12%, 10.25% -20.19% and 12.97% -15.68%, respectively. The T1-T2 Spectra for the core dried at 200℃ reveal that disconnected pores exist in shale. The pore system of shale reservoir has been subdivided using the quantitative research method. Then the mean T2cutoff value of lower limit of effective porosity has been determined as 0.4 ms, corresponding to the lower limit of pore size (4.25 nm). On this basis, this study has established a serious of techniques and methods for evaluating effective shale reservoir, so as to identify the pore fluid type, subdivide the pore system, evaluate the pore porosity, and determine the lower limit of effective pore size.

Key words: shale reservoir, pore system, disconnected pore, lower limit of effective porosity size, fluid type, nuclear magnetic resonance

中图分类号: