石油学报 ›› 2022, Vol. 43 ›› Issue (5): 648-657.DOI: 10.7623/syxb202205006

• 地质勘探 • 上一篇    下一篇

基于核磁共振测井的砂砾岩储层分类与产能预测方法

金国文1, 王堂宇1, 刘忠华2, 谢然红1, 邵亮1, 李博宇1   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室 北京 102249;
    2. 中国石油勘探开发研究院 北京 100083
  • 收稿日期:2020-07-16 修回日期:2022-01-22 发布日期:2022-05-28
  • 通讯作者: 谢然红,女,1966年8月生,2008年获中国石油大学(北京)博士学位,现为中国石油大学(北京)地球物理学院教授,主要从事岩石物理、核磁共振测井方法及应用、测井储层评价等方面的研究工作。Email:xieranhong@cup.edu.cn
  • 作者简介:金国文,男,1991年1月生,2021年获中国石油大学(北京)博士学位,现为中国石油大学(北京)博士后,主要从事岩石物理与地球物理测井方面研究。Email:jinguowen_cup@163.com
  • 基金资助:
    国家自然科学基金项目(No.42174131)资助。

Classification and productivity prediction of glutenite reservoirs based on NMR logging

Jin Guowen1, Wang Tangyu1, Liu Zhonghua2, Xie Ranhong1, Shao Liang1, Li Boyu1   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
  • Received:2020-07-16 Revised:2022-01-22 Published:2022-05-28

摘要: 砂砾岩储层具有岩石颗粒粒径范围大、低孔低渗、孔隙结构复杂和非均质性强等特点,其品质分类与产能预测难度较大。基于核磁共振测井,提出了砂砾岩储层的分类方案与产能预测方法。利用岩石核磁共振实验测量的横向弛豫时间(T2)分布,提取三孔隙组分百分比(小孔隙组分百分比S1、中孔隙组分百分比S2、大孔隙组分百分比S3)、T2分布几何平均值(T2_LM)等T2分布特征参数,构建了综合反映储层孔隙结构和岩石物理性质的储层品质指数(IRQ)。T2分布特征参数和储层品质指数与孔喉半径、排驱压力等压汞实验参数具有良好的相关性,可定量表征岩石孔隙结构。利用S3/S1IRQ建立了砂砾岩储层分类图版,基于S3/S1T2_LMIRQ和储层有效厚度(H)构建了砂砾岩储层的产能预测综合指数(F)和产能预测模型。基于核磁共振测井的砂砾岩储层分类方法和产能预测模型在准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层研究中取得了良好的应用效果,验证了该方法的有效性和实用性。研究方法与认识对开展砂砾岩储层的分类与产能研究具有一定参考意义。

关键词: 砂砾岩储层, 核磁共振测井, 孔隙结构, 储层分类, 产能预测

Abstract: Glutenite reservoir is characterized by large particle size range, low porosity and permeability, complex pore structure and strong heterogeneity, so it is difficult to predict its quality classification and productivity. Based on NMR logging, this paper proposes the classification scheme and productivity prediction method of glutenite reservoirs. Using the transverse relaxation time (T2) distribution measured by NMR experiment of rocks, the paper extracts the characteristic parameters of T2 distribution such as percentages of three-pore components (percentage of small pore components S1, percentage of medium pore components S2 and percentage of large pore components S3) and geometric mean of T2 distribution (T2_LM), and builds the reservoir quality index (IRQ) comprehensively reflecting the pore structure and physical properties of rock. Characteristic parameters of T2 distribution and reservoir quality index have a good correlation with pore throat radius, displacement pressure and other mercury penetration experiment parameters, which can quantitatively characterize the rock pore structure. The classification chart of glutenite reservoirs has been established using S3/S1 and IRQ. The productivity prediction comprehensive index (F) and the productivity prediction model of glutenite reservoir have been built based on S3/S1, T2_LM, IRQ and effective thickness (H) of the reservoir. The classification method and productivity prediction model of glutenite reservoirs based on NMR logging have achieved a good application effect in the glutenite reservoir of Baikouquan Formation in the west slope of Mahu sag, Junggar Basin, and the effectiveness and practicability of the method have also been verified, wichi is of certain reference significance for the research of glutenite reservoir classification and productivity.

Key words: glutenite reservoir, NMR logging, pore structure, reservoir classification, production prediction

中图分类号: