石油学报 ›› 2023, Vol. 44 ›› Issue (8): 1313-1332.DOI: 10.7623/syxb202308008
陈义林1,2, 秦勇1,2, 张博1,2, 杨天宇1,2, 刘静2, 王兰花1,2, 洪勇1,2
收稿日期:
2022-07-14
修回日期:
2023-02-10
出版日期:
2023-08-25
发布日期:
2023-09-06
通讯作者:
陈义林,男,1985年9月生,2014年获中国矿业大学地质资源与地质工程专业博士学位,现为中国矿业大学煤层气资源与成藏过程教育部重点实验室副主任、副教授、硕士生导师,主要从事有机岩石学和煤系气地质研究。
作者简介:
陈义林,男,1985年9月生,2014年获中国矿业大学地质资源与地质工程专业博士学位,现为中国矿业大学煤层气资源与成藏过程教育部重点实验室副主任、副教授、硕士生导师,主要从事有机岩石学和煤系气地质研究。Email:1chenyilin2@163.com
基金资助:
Chen Yilin1,2, Qin Yong1,2, Zhang Bo1,2, Yang Tianyu1,2, Liu Jing2, Wang Lanhua1,2, Hong Yong1,2
Received:
2022-07-14
Revised:
2023-02-10
Online:
2023-08-25
Published:
2023-09-06
摘要: 煤岩低温氮吸附实验的测试结果受测试样品颗粒粒径的影响显著,目前鲜有关于制样粒径对不同变质程度煤孔隙结构差异化影响的系统研究报道。选取7件不同变质程度的煤样(包括褐煤、气煤、肥煤、瘦煤、无烟煤和超无烟煤)开展了4种不同粒径(40~50目、70~90目、160~200目、>300目)煤颗粒的低温氮吸附实验,探讨了制样粒径对不同变质程度煤的孔隙结构的影响。结果表明:①5件烟煤—超无烟煤的显微组分均以基质镜质体为主,2件褐煤(丝质煤和碎屑煤)的显微组成分别以丝质体和密屑体为主;丝质煤主要发育丝质体胞腔孔,瘦煤和无烟煤的孔隙类型以气孔为主。②随着粒径变小,烟煤—超无烟煤的总孔、大孔、中孔的孔容和比表面积均逐级增大,而碎屑煤的孔隙结构基本不变,丝质煤的大孔孔容和比表面积均逐渐变小。③随着煤变质程度增加,最小煤颗粒(>300目)与最大煤颗粒(40~50目)的孔容差值占比和比表面积差值占比均持续升高。④在逐级粉碎过程中,烟煤—超无烟煤的吸附回线宽度逐渐变小,而褐煤的吸附回线形态基本不变。研究认为,褐煤孔隙类型以开放孔为主,封闭孔孔容的占比随着煤化程度增大急剧增加;瘦煤、无烟煤和超无烟煤孔隙类型以封闭孔为主。粉碎过程显著改造了煤岩的原始孔隙形貌,逐级粉碎会导致烟煤—超无烟煤的大量孤立封闭孔释放,改造形成一端封闭的开放孔,但也会显著破坏丝质煤的胞腔孔。忽略煤粒径对低温氮吸附测试结果的影响可能会造成煤储层孔隙结构的错误评价,提出了低温氮吸附法测定煤岩孔隙结构的合理制样粒径范围,建议">300目"为测定煤岩全孔隙(封闭孔和开放孔)的最佳制样粒径范围,"2~4目"为测定煤岩开放孔的最佳粒径范围。
中图分类号:
陈义林, 秦勇, 张博, 杨天宇, 刘静, 王兰花, 洪勇. 制样粒径对不同变质程度煤孔隙结构的差异化影响[J]. 石油学报, 2023, 44(8): 1313-1332.
Chen Yilin, Qin Yong, Zhang Bo, Yang Tianyu, Liu Jing, Wang Lanhua, Hong Yong. Differential influence of sample particle size on the pore structure of coal with different metamorphic degree[J]. Acta Petrolei Sinica, 2023, 44(8): 1313-1332.
[1] 陈萍, 唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报, 2001, 26(5):552-556. CHEN Ping, TANG Xiuyi.The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J].Journal of China Coal Society, 2001, 26(5):552-556. [2] 降文萍, 宋孝忠, 钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报, 2011, 36(4):609-614. JIANG Wenping, SONG Xiaozhong, ZHONG Lingwen.Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J].Journal of China Coal Society, 2011, 36(4):609-614. [3] 陈尚斌, 朱炎铭, 王红岩, 等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报, 2012, 37(3):438-444. CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al.Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J].Journal of China Coal Society, 2012, 37(3):438-444. [4] 李祥春, 高佳星, 张爽, 等.基于扫描电镜、孔隙-裂隙分析系统和气体吸附的煤孔隙结构联合表征[J].地球科学, 2022, 47(5):1876-1889. LI Xiangchun, GAO Jiaxing, ZHANG Shuang, et al.Combined characterization of scanning electron microscopy, pore and crack analysis system, and gas adsorption on pore structure of coal with different volatilization[J].Earth Science, 2022, 47(5):1876-1889. [5] FU Haijiao, YAN Detian, YAO Chenpeng, et al.Pore structure and multi-scale fractal characteristics of adsorbed pores in marine shale:a case study of the Lower Silurian Longmaxi shale in the Sichuan Basin, China[J].Journal of Earth Science, 2022, 33(5):1278-1290. [6] 姚艳斌, 刘大锰.煤储层孔隙系统发育特征与煤层气可采性研究[J].煤炭科学技术, 2006, 34(3):64-68. YAO Yanbin, LIU Dameng.Developing features of fissure system in Henan coal reserves seams and research on mining of coal bed methane[J].Coal Science and Technology, 2006, 34(3):64-68. [7] 张松航, 唐书恒, 汤达祯, 等.鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J].中国矿业大学学报, 2009, 38(5):713-718. ZHANG Songhang, TANG Shuheng, TANG Dazhen, et al.Fractal characteristics of coal reservoir seepage pore, east margin of Ordos Basin[J].Journal of China University of Mining & Technology, 2009, 38(5):713-718. [8] GAN H, NANDI S P, WALKER JR P L.Nature of the porosity in American coals[J].Fuel, 1972, 51(4):272-277. [9] RODRIGUES C F, LEMOS DE SOUSA M J.The measurement of coal porosity with different gases[J].International Journal of Coal Geology, 2002, 48(3/4):245-251. [10] 吕志发, 张新民, 钟铃文, 等.块煤的孔隙特征及其影响因素[J].中国矿业大学学报, 1991, 20(3):45-54. LV Zhifa, ZHANG Xinmin, ZHONG Lingwen, et al.The pore features of lump coal and its influence factors[J].Journal of China University of Mining & Technology, 1991, 20(3):45-54. [11] 秦勇, 刘焕杰, 张井, 等.高煤级煤开放孔隙结构的分布特征及差异演化[J].中国矿业大学学报, 1992, 21(S1):8-16. QIN Yong, LIU Huanjie, ZHANG Jing, et al.Distribution and differential evolution of the open pore structure of high-rank coal[J].Journal of China University of Mining & Technology, 1992, 21(S1):8-16. [12] 李明, 姜波, 秦勇, 等.构造煤中矿物质对孔隙结构的影响研究[J].煤炭学报, 2017, 42(3):726-731. LI Ming, JIANG Bo, QIN Yong, et al.Analysis of mineral effect on coal pore structure of tectonically deformed coal[J].Journal of China Coal Society, 2017, 42(3):726-731. [13] 琚宜文, 姜波, 侯泉林, 等.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报, 2005, 79(2):269-285. JU Yiwen, JIANG Bo, HOU Quanlin.Structural evolution of nano-scale pores of tectonic coals in southern North China and its mechanism[J].Acta Geologica Sinica, 2005, 79(2):269-285. [14] OKOLO G N, EVERSON R C, NEOMAGUS H W J P, et al.Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J].Fuel, 2015, 141:293-304. [15] P+1PARKASH S, CHAKRABARTTY S K.Microporosity in Alberta plains coals[J].International Journal of Coal Geology, 1986, 6(1):55-70. [16] ANDERSON R B, HALL W K, LECKY J A, et al.Sorption studies on American coals[J].The Journal of Physical Chemistry, 1956, 60(11):1548-1558. [17] TANG Jiewu, FENG Li, LI Yajun, et al.Fractal and pore structure analysis of Shengli lignite during drying process[J].Powder Technology, 2016, 303:251-259. [18] SHAN Changan, ZHANG Tingshan, GUO Junjie, et al.Characterization of the micropore systems in high-rank coal reservoirs of the southern Sichuan Basin, China[J].AAPG Bulletin, 2015, 99(11):2099-2119. [19] ZHAO Junlong, XU Hao, TANG Dazhen, et al.Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng block, eastern margin, Ordos Basin, China[J].International Journal of Coal Geology, 2016, 159:18-29. [20] ZHAO Junlong, XU Hao, TANG Dazhen, et al.A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes[J].Fuel, 2016, 183:420-431. [21] TAO Shu, CHEN Shida, TANG Dazhen, et al.Material composition, pore structure and adsorption capacity of low-rank coals around the first coalification jump:a case of eastern Junggar Basin, China[J].Fuel, 2018, 211:804-815. [22] TAO Shu, ZHAO Xu, TANG Dazhen, et al.A model for characterizing the continuous distribution of gas storing space in low-rank coals[J].Fuel, 2018, 233:552-557. [23] CLARKSON C R, BUSTIN R M.The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study.1.isotherms and pore volume distributions[J].Fuel, 1999, 78(11):1333-1344. [24] MASTALERZ M, DROBNIAK A, STRAPOĆ D, et al.Varia tions in pore characteristics in high volatile bituminous coals:implications for coal bed gas content[J].International Journal of Coal Geology, 2008, 76(3):205-216. [25] MASTALERZ M, HE Lilin, MELNICHENKO Y B, et al.Porosity of coal and shale:insights from gas adsorption and SANS/USANS techniques[J].Energy & Fuels, 2012, 26(8):5109-5120. [26] MARDON S M, EBLE C F, HOWER J C, et al.Organic petrology, geochemistry, gas content and gas composition of Middle Pennsylvanian age coal beds in the eastern interior (Illinois)basin:implications for CBM development and carbon sequestration[J].International Journal of Coal Geology, 2014, 127:56-74. [27] LIU Dameng, YAO Yanbin, TANG Dazhen, et al.Coal reservoir characteristics and coalbed methane resource assessment in Huainan and Huaibei coalfields, southern North China[J].International Journal of Coal Geology, 2009, 79(3):97-112. [28] ZHANG Songhang, TANG Shuheng, TANG Dazhen, et al.The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China[J].International Journal of Coal Geology, 2010, 81(2):117-127. [29] CHEN Yue, TANG Dazhen, XU Hao, et al.Pore and fracture characteristics of different rank coals in the eastern margin of the Ordos Basin, China[J].Journal of Natural Gas Science and Engineering, 2015, 26:1264-1277. [30] FU Haijiao, TANG Dazhen, XU Hao, et al.Abrupt changes in reservoir properties of low-rank coal and its control factors for methane adsorbability[J].Energy & Fuels, 2016, 30(3):2084-2094. [31] 陈义林.基于精细解吸过程的无烟煤重烃浓度异常及其成因探讨[D].徐州:中国矿业大学, 2014:115-125. CHEN Yilin.Abnormal concentration and origin of heavy hydrocarbon in anthracite based on refined desorption process[D].Xuzhou:China University of Mining and Technology, 2014:115-125. [32] 郭卫坤, 屈争辉, 余坤, 等.无烟煤液氮吸附测试的粒度效应[J].煤矿安全, 2016, 47(4):63-67. GUO Weikun, QU Zhenghui, YU Kun, et al.Effects of particle size for anthracite nitrogen adsorption test[J].Safety in Coal Mines, 2016, 47(4):63-67. [33] MASTALERZ M, HAMPTON L, DROBNIAK A, et al.Significance of analytical particle size in low-pressure N2 and CO2 adsorption of coal and shale[J].International Journal of Coal Geology, 2017, 178:122-131. [34] HOU Shihui, WANG Xiaoming, WANG Xingjin, et al.Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption[J].International Journal of Coal Geology, 2017, 183:1-13. [35] CHEN Yinlin, QIN Yong, WEI Chongtao, et al.Porosity changes in progressively pulverized anthracite subsamples:implications for the study of closed pore distribution in coals[J].Fuel, 2018, 225:612-622. [36] CHEN Yilin, ZHANG Bo, QIN Yong, et al.Differences in CH4 and C2H6 carbon isotopic compositions from open and closed pores in coal:implications for understanding the two-stage δ13C shift during canister desorption[J].International Journal of Coal Geology, 2020, 230:103586. [37] 王莉娜.钟2井烟煤解吸气化学组成精细分馏过程[D].徐州:中国矿业大学, 2019:59-65. WANG Lina.Fine fractionation of chemical composition of whole-process desorption CBM from bituminous coal in Well Zhong 2[D].Xuzhou:China University of Mining and Technology, 2019:59-65. [38] ZHANG Shasha, LIU Huan, WU Caifang, et al.Influence of particle size on pore structure and multifractal characteristics in coal using low-pressure gas adsorption[J].Journal of Petroleum Science and Engineering, 2022, 212:110273. [39] WANG Xiaoming, DANG Zheng, HOU Shihui, et al.Fractal characteristics of pulverized high volatile bituminous coals with different particle size using gas adsorption[J].Fuel, 2022, 315:122814. [40] QI Lingling, ZHOU Xiaoqing, PENG Xinshan, et al.Study on the difference of pore structure of anthracite under different particle sizes using low-temperature nitrogen adsorption method[J].Environmental Science and Pollution Research, 2023, 30(2):5216-5230. [41] ZHANG Jianguo, LI Xiyuan, JIAO Jihong, et al.Comparative study of pore structure characteristics between mudstone and coal under different particle size conditions[J].Energies, 2021, 14(24):8435. [42] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤层煤样采取方法:GB/T 482-2008[S].北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Sampling of coal seams:GB/T 482-2008[S].Beijing:Standards Press of China, 2009. [43] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤的显微组分组和矿物测定方法:GB/T 8899-2013[S].北京:中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Determination of maceral group composition and minerals in coal:GB/T 8899-2013[S].Beijing:Standards Press of China, 2014. [44] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤的镜质体反射率显微镜测定方法:GB/T 6948-2008[S].北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Method of determining microscopically the reflectance of vitrinite in coal:GB/T 6948-2008[S].Beijing:Standards Press of China, 2009. [45] 中国煤炭工业协会.煤的工业分析方法:GB/T 212-2008[S].北京:中国标准出版社, 2008. China National Coal Association.Proximate analysis of coal:GB/T 212-2008[S].Beijing:Standards Press of China, 2008. [46] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤中碳和氢的测定方法:GB/T 476-2008[S].北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Determination of carbon and hydrogen in coal:GB/T 476-2008[S].Beijing:Standards Press of China, 2009. [47] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.煤中氮的测定方法:GB/T 19227-2008[S].北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Determination of nitrogen in coal:GB/T 19227-2008[S].Beijing:Standards Press of China, 2009. [48] 中华人民共和国国家质量监督检验检疫总局.煤的元素分析方法:GB/T 476-2001[S].北京:中国标准出版社, 2004. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.Ultimate analysis of coal:GB/T 476-2001[S].Beijing:Standards Press of China, 2004. [49] SING K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J].Pure and Applied Chemistry, 1985, 57(4):603-619. [50] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报, 2001, 26(1):40-44. ZHANG Hui.Genetical type of proes in coal reservoir and its research significance[J].Journal of China Coal Society, 2001, 26(1):40-44. [51] 陈学敏.贵州龙潭组煤类分布规律及其成因[J].煤田地质与勘探, 1995, 23(2):21-24. CHEN Xuemin.Distribution and genesis of coal types in Longtan Formation, Guizhou[J].Coal Geology & Exploration, 1995, 23(2):21-24. [52] 陈义林, 秦勇, 李壮福, 等.织纳煤田龙潭组煤的岩浆热变质成因[J].中国矿业大学学报, 2012, 41(3):406-414. CHEN Yilin, QIN Yong, LI Zhuangfu, et al.Magma thermal metamorphism of the Longtan Formation coals in Zhina coalfield, Guizhou[J].Journal of China University of Mining & Technology, 2012, 41(3):406-414. [53] 郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报, 1987(4):51-56. HAO Qi.On morphological character and origin of micropores in coal[J].Journal of China Coal Society, 1987(4):51-56. [54] 杨起, 汤达祯.华北煤变质作用对煤含气量和渗透率的影响[J].地球科学——中国地质大学学报, 2000, 25(3):273-277. YANG Qi, TANG Dazhen.Effect of coal Metamorphism on methane content and permeability of coal in North China[J].Earth Science——Journal of China University of Geosciences, 2000, 25(3):273-277. [55] NIU Qinghe, PAN Jienan, CAO Liwen, et al.The evolution and formation mechanisms of closed pores in coal[J].Fuel, 2017, 200:555-563. [56] ALEXEEV A D, VASILENKO T A, ULYANOVA E V.Closed porosity in fossil coals[J].Fuel, 1999, 78(6):635-638. [57] HE Lilin, MELNICHENKO Y B, MASTALERZ M, et al.Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering[J].Energy & Fuels, 2012, 26(3):1975-1983. [58] CAI Yidong, LIU Dameng, PAN Zhejun, et al.Pore structure of selected Chinese coals with heating and pressurization treatments[J].Science China Earth Sciences, 2014, 57(7):1567-1582. [59] PAN Jienan, NIU Qinghe, WANG Kai, et al.The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J].Microporous and Mesoporous Materials, 2016, 224:245-252. [60] LIU Tong, ZHAO Yixin, DANESH N N.The characteristics of closed pores in coals with different ranks[J].Frontiers in Earth Science, 2021, 9:785913. [61] 陈义林, 秦勇, 田华, 等.基于压汞法无烟煤孔隙结构的粒度效应[J].天然气地球科学, 2015, 26(9):1629-1639. CHEN Yilin, QIN Yong, TIAN Hua, et al.Particle size effect of pore structure of anthracite by mercury porosimetry[J].Natural Gas Geoscience, 2015, 26(9):1629-1639. [62] 唐书恒, 张静平, 吴敏杰.腐泥煤孔隙结构特征研究[J].天然气地球科学, 2013, 24(2):247-251. TANG Shuheng, ZHANG Jingping, WU Minjie.The pore structure characteristic about the sapropelic coal[J].Natural Gas Geoscience, 2013, 24(2):247-251. [63] 严继民, 张启元, 高敬琮.吸附与凝聚[M].2版.北京:科学出版社, 1986:113-117. YAN Jimin, ZHANG Qiyuan, GAO Jingcong.Adsorption and coagulation[M].2nd ed.Beijing:Science Press, 1986:113-117. [64] DE BOER J H.The structure and properties of porous materials[M]//Proceedings of the Tenth Symposium of the Colston Research Society Held in the University of Bristol.London:Butterworths, 1958:68-94. [65] 国家能源局.煤的多组分气体等温吸附实验方法:NB/T 10019-2015[S].北京:中国电力出版社, 2015. National Energy Administration.Experimental method of multicomponent gas isothermal adsorption on coal:NB/T 10019-2015[S].Beijing:China Electric Power Press, 2015. [66] 国家能源局.岩石比表面积和孔径分布测定 静态吸附容量法:SY/T 6154-2019[S].北京:石油工业出版社, 2019. National Energy Administration.Determination of specific surface and pore size distribution of rocks-static adsorption capacity method:SY/T 6154-2019[S].Beijing:Petroleum Industry Press, 2019. [67] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.气体吸附BET法测定固态物质比表面积:GB/T 19587-2017[S].北京:中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Determination of the specific surface area of solids by gas adsorption using the BET method:GB/T 19587-2017[S].Beijing:Standards Press of China, 2017. [68] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第3部分:气体吸附法分析微孔:GB/T 21650.3-2011[S].北京:中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 3:analysis of micropores by gas adsorption:GB/T 21650.3-2011[S].Beijing:Standards Press of China, 2012. [69] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第2部分:气体吸附法分析介孔和大孔:GB/T 21650.2-2008[S].北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 2:analysis of mesopores and macropores by gas adsorption:GB/T 21650.2-2008[S].Beijing:Standards Press of China, 2008. |
[1] | 惠沙沙, 庞雄奇, 谌卓恒, 王琛茜, 施砍园, 胡涛, 胡耀, 李敏, 梅术星, 黎茂稳. 四川盆地海相页岩孔隙类型对孔隙空间贡献定量表征[J]. 石油学报, 2024, 45(3): 531-547. |
[2] | 丁骞, 甘利灯, 魏乐乐, 张宇生, 杨昊, 姜晓宇, 王峣钧. 双孔隙结构因子及其在储层渗透性地震预测中的应用[J]. 石油学报, 2023, 44(2): 339-347. |
[3] | 唐淑玲, 汤达祯, 杨焦生, 邓泽, 李松, 陈世达, 冯鹏, 黄晨, 李站伟. 鄂尔多斯盆地大宁—吉县区块深部煤储层孔隙结构特征及储气潜力[J]. 石油学报, 2023, 44(11): 1854-1866,1902. |
[4] | 方正, 蒲秀刚, 陈世悦, 鄢继华, 陈星燃, 崔绮梦. 陆相湖盆深水区页岩高频层序对储层发育的影响——以渤海湾盆地沧东凹陷孔店组二段页岩为例[J]. 石油学报, 2023, 44(10): 1663-1682. |
[5] | 金国文, 王堂宇, 刘忠华, 谢然红, 邵亮, 李博宇. 基于核磁共振测井的砂砾岩储层分类与产能预测方法[J]. 石油学报, 2022, 43(5): 648-657. |
[6] | 黄兴, 窦亮彬, 左雄娣, 高辉, 李天太. 致密油藏裂缝动态渗吸排驱规律[J]. 石油学报, 2021, 42(7): 924-935. |
[7] | 李童, 龙安林, 刘波, 丁晓军, 于慧敏, 鲁珊珊, 宋彦辰, 石开波. 低渗透砂岩油藏隔夹层注气突破压力及注气开发策略——以柴达木盆地尕斯库勒油田E31油藏为例[J]. 石油学报, 2021, 42(10): 1364-1372. |
[8] | 黄兴, 倪军, 李响, 薛俊杰, 柏明星, 周彤. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864. |
[9] | 王安民, 曹代勇, 聂敬, 秦荣芳. 巨厚煤储层孔隙结构的垂向非均质性特征——以青海聚乎更矿区为例[J]. 石油学报, 2020, 41(6): 691-701. |
[10] | 单长安, 张廷山, 梁兴, 胡冉冉, 赵卫卫. 富镜质组和富惰质组高阶煤纳米孔隙结构特征[J]. 石油学报, 2020, 41(6): 723-736. |
[11] | 罗文彬, 马中良, 郑伦举, 谭静强, 王张虎, 宁传祥. 海相页岩成岩-成烃过程中孔隙结构的演变——来自热模拟实验的启示[J]. 石油学报, 2020, 41(5): 540-552. |
[12] | 宋岩, 高凤琳, 唐相路, 陈磊, 王幸蒙. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(12): 1501-1512. |
[13] | 姜振学, 李廷微, 宫厚健, 姜涛, 常佳琦, 宁传祥, 苏思远, 陈委涛. 沾化凹陷低熟页岩储层特征及其对页岩油可动性的影响[J]. 石油学报, 2020, 41(12): 1587-1600. |
[14] | 何晶, 何生, 刘早学, 翟刚毅, 王亿, 韩元佳, 万阔, 魏思乐. 鄂西黄陵背斜南翼下寒武统水井沱组页岩孔隙结构与吸附能力[J]. 石油学报, 2020, 41(1): 27-42. |
[15] | 林晓英, 黄美鑫, 陈浩, 王健, 王瑞杰. 不同极性溶剂萃取对泥页岩孔隙结构的影响[J]. 石油学报, 2019, 40(12): 1485-1494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021 《石油学报》编辑部
通讯地址:北京市西城区六铺炕街6号 (100724)
电话:62067137(收稿查询、地质勘探栏目编辑),010-62067128(期刊发行),62067139(油田开发、石油工程栏目编辑)
E-mail: syxb@cnpc.com.cn(编辑部),syxb8@cnpc.com.cn(收稿及稿件查询),syxbgeo@126.com(地质勘探栏目编辑),syxb7@cnpc.com.cn(油田开发、石油工程栏目编辑,期刊发行)
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备13000890号-1