石油学报 ›› 2017, Vol. 38 ›› Issue (5): 587-596.DOI: 10.7623/syxb201705012

• 石油工程 • 上一篇    下一篇

高温射流反应腔结构设计与反应规律

宋先知1, 吕泽昊1, 崔柳2, 李根生1, 刘昱1, 胡晓东1, 纪国栋2   

  1. 1. 中国石油大学油气资源与探测国家重点实验室 北京 102249;
    2. 中国石油集团钻井工程技术研究院 北京 102206
  • 收稿日期:2016-10-12 修回日期:2017-03-03 出版日期:2017-05-25 发布日期:2017-06-07
  • 通讯作者: 宋先知,男,1982年6月生,2004年获中国石油大学(华东)学士学位,2010年获中国石油大学(北京)博士学位,现为中国石油大学(北京)石油工程学院副教授,主要从事油气井流体力学、水射流钻井与完井方面的研究工作。Email:songxz@cup.edu.cn
  • 作者简介:宋先知,男,1982年6月生,2004年获中国石油大学(华东)学士学位,2010年获中国石油大学(北京)博士学位,现为中国石油大学(北京)石油工程学院副教授,主要从事油气井流体力学、水射流钻井与完井方面的研究工作。Email:songxz@cup.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51504272,U1562212)、教育部优秀博士论文作者专项基金项目(201352)、中国石油天然气集团公司钻井新技术新方法(2016A-3902)、中国石油天然气集团公司创新基金项目(2015D-5006-0308)和中英研究与创新桥计划合作项目"地热智能井钻完井关键技术与优化设计平台"(2016YFE0124600)资助。

Structure design and reaction law of high-temperature jet reaction chamber

Song Xianzhi1, Lü Zehao1, Cui Liu2, Li Gensheng1, Liu Yu1, Hu Xiaodong1, Ji Guodong2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. CNPC Drilling Research Institute, Beijing 102206, China
  • Received:2016-10-12 Revised:2017-03-03 Online:2017-05-25 Published:2017-06-07

摘要:

结合高压水射流和岩石热裂解钻井方法,提出了适用于深部硬地层的高温射流钻井新方法,即利用高速射流对岩石表面形成冲击力,同时高温流体迅速将热量传递给岩石以达到快速破岩的目的。因此高温射流发生装置对最终作用于岩石的射流性能十分重要,设计了两种高温射流燃烧反应发生装置结构(混合装置和对冲装置),利用计算流体力学模拟了常压下不同反应参数对生成的高温射流的影响,并对两种装置进行对比分析和反应规律研究。结果表明:高温的平均射流速度随着甲醇质量流量的增加而增大;气体存在滑脱效应,在满足化学反应方程的理论值的基础上,甲醇的实际质量流量应大于理论质量流量,而氧气的实际质量流量小于理论质量流量,使两者混合和燃烧更加充分,释放更多能量;在本文模型条件下,将空气质量流量控制在0.03~0.04 kg/s较为合适,既可以保证反应腔内充分燃烧,又可以获得较高的射流速度;冷水质量流量与喷嘴速度呈线性正相关;在现场实际应用中,应注意控制冷水流量,以免造成射流温度过低。不同空气质量流量条件下,混合装置的射流速度和温度较优。两种装置的射流速度和温度在不同氧气浓度条件下变化规律一致,均先增大、后减小,但是在射流速度方面,对冲装置较优。在现场实际应用时可根据需要达到的射流速度和温度选择不同结构的燃烧装置,使高温射流的性能达到最优。

关键词: 高温射流, 非预混燃烧, 燃烧装置, 反应规律, 数值模拟

Abstract:

Using high-pressure water jet and rock thermal cracking drilling methods, a new drilling technology, i.e., high-temperature jet drilling which was suitable for hard formations was proposed. High-velocity jet was used to impinge the rock surface, and high-temperature fluid can transfer heat to rocks to rapidly disintegrate rocks. Consequently, the reaction chamber of high-temperature jet is very important for the final jet performance on rocks, and two kinds of combustion reaction chamber (mixed configuration and hedge configuration) were designed for high-temperature jet. Computational fluid dynamics was applied to simulate the influences of different reaction parameters on the generated high-temperature jet under normal pressure conditions, and meanwhile, comparative analysis and reaction law research were performed on these two configurations. Results show that the average high-temperature jet velocity increases with the rising of methanol mass flow rate, and the "slippage effect" exists in the gas phase. Based on the theoretical value of chemical reaction equation, the actual mass flow rate of methanol should be greater than theoretical mass flux, while the actual mass flow rate of oxygen should be less than theoretical mass flow. Thus they both can be fully blended and combusted to release more energy. Under model conditions, air mass flow rate is controlled within 0.03-0.04 kg/s appropriately, which can not only ensure the full combustion in the reaction chamber, but also obtain a higher jet velocity. The cooling water mass flow rate has a linear positive correlation with nozzle velocity. In the practical application, the flow rate of cold water should be controlled to avoid excessively low jet temperature. Under different air mass flow rates, the jet velocity and temperature of mixed configuration are more favorable. The jet velocity and temperature of the two configurations have consistent change laws under different oxygen concentrations, which increase first and then decrease. However, the hedge configuration is better in terms of jet velocity. In the actual application, according to the required jet velocity and temperature, the reaction chambers with different configurations are suggested to achieve the optimal performance of high-temperature jet.

Key words: high-temperature jet, non-premixed combustion model, combustion chamber, reaction law, numerical simulation

中图分类号: