[1] HOFFMAN P F,KAUFMAN A J,HALVERSON G P,et al.A neoproterozoic snowball earth[J].Science,1998,281(5381):1342-1346.
[2] HOFFMAN P F,ABBOT D S,ASHKENAZY Y,et al.Snowball Earth climate dynamics and Cryogenian geology-geobiology[J].Science Advances,2017,3(11):e1600983.
[3] WANG Shufang,ZOU Caineng,DONG Dazhong,et al.Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin,SW China:geochemical and organic carbon isotopic evidence[J].Marine and Petroleum Geology,2015,66:660-672.
[4] 赵坤,李婷婷,朱光有,等.下寒武统优质烃源岩的地球化学特征与形成机制——以鄂西地区天柱山剖面为例[J].石油学报,2020,41(1):13-26.
ZHAO Kun,LI Tingting,ZHU Guangyou,et al.Geochemical characteristics and formation mechanism of high-quality Lower Cambrian source rocks:a case study of the Tianzhushan profile in western Hubei[J].Acta Petrolei Sinica,2020,41(1):13-26.
[5] ZHU Guangyou,MILKOV A V,ZHANG Zhiyao,et al.Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area,Tarim Basin,China[J].AAPG Bulletin,2019,103(7):1703-1743.
[6] ZHU Guangyou,ZHANG Zhiyao,ZHOU Xiaoxiao,et al.The complexity,secondary geochemical process,genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin,China[J].Earth-Science Reviews,2019,198:102930.
[7] 王朋飞,姜振学,韩波,等.中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数[J].石油学报,2018,39(2):152-162.
WANG Pengfei,JIANG Zhenxue,HAN Bo,et al.Reservoir geological parameters for efficient exploration and development of Lower Cambrian Niutitang Formation shale gas in South China[J].Acta Petrolei Sinica,2018,39(2):152-162.
[8] WILLE M,NAGLER T F,LEHMANN B,et al.Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J].Nature,2008,453(7196):767-769.
[9] ZHU Maoyan,LI Xianhua.Introduction:from Snowball Earth to the Cambrian explosion-evidence from China[J].Geological Magazine,2017,154(6):1187-1192.
[10] XU Lingang,LEHMANN B,MAO Jingwen,et al.Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China-A reassessment[J].Economic Geology,2011,106(3):511-522.
[11] OKADA Y,SAWAKI Y,KOMIYA T,et al.New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges,Weng'an and Chengjiang areas,South China[J].Gondwana Research,2014,25(3):1027-1044.
[12] DERRY L A,BRASIER M D,CORFIELD R M,et al.Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton:a paleoenvironmental record during the ‘Cambrian explosion’[J].Earth and Planetary Science Letters,1994,128(3/4):671-681.
[13] JIANG Shaoyong,YANG Jinghong,LING Hongfei,et al.Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China:an Os isotope and PGE geochemical investigation[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):217-228.
[14] KIMURA H,MATSUMOTO R,KAKUWA Y,et al.The Vendian-Cambrian δ13C record,North Iran:evidence for overturning of the ocean before the Cambrian Explosion[J].Earth and Planetary Science Letters,1997,147(1/4):E1-E7.
[15] CHENG Meng,LI Chao,CHEN Xi,et al.Delayed Neoproterozoic oceanic oxygenation:evidence from Mo isotopes of the Cryogenian Datangpo Formation[J].Precambrian Research,2018,319:187-197.
[16] GUILBAUD R,SLATER B J,POULTON S W,et al.Oxygen minimum zones in the Early Cambrian ocean[J].Geochemical Perspectives Letters,2018,6:33-38.
[17] WANG Dan,LING Hongfei,STRUCK U,et al.Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J].Nature Communications,2018,9(1):2575.
[18] FANG Xinyan,WU Liangliang,GENG Ansong,et al.Formation and evolution of the Ediacaran to Lower Cambrian black shales in the Yangtze Platform,South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,527:87-102.
[19] XIANG Lei,SCHOEPFER S D,ZHANG Hua,et al.Evolution of primary producers and productivity across the Ediacaran-Cambrian transition[J].Precambrian Research,2018,313:68-77.
[20] ZHANG Yuying,HE Zhiliang,JIANG Shu,et al.Marine redox stratification during the Early Cambrian (ca.529-509 Ma)and its control on the development of organic-rich shales in Yangtze Platform[J].Geochemistry,Geophysics,Geosystems,2017,18(6):2354-2369.
[21] 闫磊,朱光有,陈永权,等.塔里木盆地下寒武统烃源岩分布[J].天然气地球科学,2019,30(11):1569-1578.
YAN Lei,ZHU Guangyou,CHEN Yongquan,et al.Distribution of Lower Cambrian source rocks in the Tarim Basin[J].Natural Gas Geoscience,2019,30(11):1569-1578.
[22] 朱光有,曹颖辉,闫磊,等.塔里木盆地8000m以深超深层海相油气勘探潜力与方向[J].天然气地球科学,2018,29(6):755-772.
ZHU Guangyou,CAO Yinghui,YAN Lei,et al.Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin[J].Natural Gas Geoscience,2018,29(6):755-772.
[23] 赵文智,胡素云,汪泽成,等.中国元古界-寒武系油气地质条件与勘探地位[J].石油勘探与开发,2018,45(1):1-13.
ZHAO Wenzhi,HU Suyun,WANG Zecheng,et al.Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J].Petroleum Exploration and Development,2018,45(1):1-13.
[24] 邹才能,翟光明,张光亚,等.全球常规-非常规油气形成分布、资源潜力及趋势预测[J].石油勘探与开发,2015,42(1):13-25.
ZOU Caineng,ZHAI Guangming,ZHANG Guangya,et al.Formation,distribution,potential and prediction of global conventional and unconventional hydrocarbon resources[J].Petroleum Exploration and Development,2015,42(1):13-25.
[25] ZOU Caineng,WEI Guoqi,XU Chunchun,et al.Geochemistry of the Sinian-Cambrian gas system in the Sichuan Basin,China[J].Organic Geochemistry,2014,74:13-21.
[26] ZHU Guangyou,ZOU Caineng,YANG Haijun,et al.Hydrocarbon accumulation mechanisms and industrial exploration depth of large-area fracture-cavity carbonates in the Tarim Basin,Western China[J].Journal of Petroleum Science and Engineering,2015,133:889-907.
[27] 杨跃明,杨雨,杨光,等.安岳气田震旦系、寒武系气藏成藏条件及勘探开发关键技术[J].石油学报,2019,40(4):493-508.
YANG Yueming,YANG Yu,YANG Guang,et al.Gas accumulation conditions and key exploration & development technologies of Sinian and Cambrian gas reservoirs in Anyue gas field[J].Acta Petrolei Sinica,2019,40(4):493-508.
[28] WANG Jian,LI Zhengxiang.History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J].Precambrian Research,2003,122(1/4):141-158.
[29] LI Z X,BOGDANOVA S V,COLLINS A S,et al.Assembly,configuration,and break-up history of Rodinia:a synthesis[J].Precambrian Research,2008,160(1/2):179-210.
[30] CHEN Daizhao,ZHOU Xiqiang,FU Yong,et al.New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J].Terra Nova,2015,27(1):62-68.
[31] ZHAO Xiangkuan,WANG Xinqiang,SHI Xiaoying,et al.Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,504:86-103.
[32] 杨兴莲,赵元龙,朱茂炎,等.贵州丹寨寒武系牛蹄塘组海绵动物化石及其环境背景[J].古生物学报,2010,49(3):348-359.
YANG Xinglian,ZHAO Yuanlong,ZHU Maoyan,et al.Sponges from the Early Cambrian Niutitang Formation at Danzhai,Guizhou and their environmental background[J].Acta Palaeontologica Sinica,2010,49(3):348-359.
[33] 赵文智,魏国齐,杨威,等.四川盆地万源-达州克拉通内裂陷的发现及勘探意义[J].石油勘探与开发,2017,44(5):659-669.
ZHAO Wenzhi,WEI Guoqi,YANG Wei,et al.Discovery of Wanyuan-Dazhou intracratonic rift and its exploration significance in the Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(5):659-669.
[34] 朱光有,张水昌,梁英波,等.四川盆地威远气田硫化氢的成因及其证据[J].科学通报,2006,51(23):2780-2788.
ZHU Guangyou,ZHANG Shuichang,LIANG Yingbo,et al.The genesis of H2S in the Weiyuan Gas Field,Sichuan Basin and its evidence[J].Chinese Science Bulletin,2007,52(10):1394-1404.
[35] 邹才能,杜金虎,徐春春,等.四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J].石油勘探与开发,2014,41(3):278-293.
ZOU Caineng,DU Jinhu,XU Chunchun,et al.Formation,distribution,resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2014,41(3):278-293.
[36] GOLDBERG T,STRAUSS H,GUO Qingjun,et al.Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform:evidence from biogenic sulphur and organic carbon isotopes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):175-193.
[37] OCH L M,SHIELDS-ZHOU G A,POULTON S W,et al.Redox changes in Early Cambrian black shales at Xiaotan section,Yunnan Province,South China[J].Precambrian Research,2013,225:166-189.
[38] JONES B,MANNING D A C.Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111(1/4):111-129.
[39] POULTON S W,CANFIELD D E.Ferruginous conditions:a dominant feature of the ocean through earth's history[J].Elements, 2011,7(2):107-112.
[40] RAISWELL R,CANFIELD D.Sources of iron for pyrite formation in marine sediments[J].American Journal of Science,1998,298(3):219-245.
[41] JIN Chengsheng,LI Chao,ALGEO T J,et al.A highly redox-heterogeneous ocean in South China during the Early Cambrian (~529-514 Ma):implications for biota-environment co-evolution[J].Earth and Planetary Science Letters,2016,441:38-51.
[42] CHENG Meng,LI Chao,ZHOU Lian,et al.Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters:a case study of the Lower Cambrian Niutitang shales,South China[J].Geochimica et Cosmochimica Acta,2016,183:79-93.
[43] GUO Qingjun,SHIELDS G A,LIU Congqiang,et al.Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):194-216.
[44] COOK P J,SHERGOLD J H.Phosphorus,phosphorites and skeletal evolution at the Precambrian-Cambrian boundary[J]. Nature,1984,308(5956):231-236.
[45] HAN Tao,ZHU Xiaoqing,LI Kun,et al.Metal sources for the polymetallic Ni-Mo-PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation,South China[J].Ore Geology Reviews,2015,67:158-169.
[46] XU Lingang,LEHMANN B,MAO Jingwen.Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China:evidence from Mo isotope,PGE,trace element,and REE geochemistry[J].Ore Geology Reviews,2013,52:66-84.
[47] 刘树根,孙玮,罗志立,等.兴凯地裂运动与四川盆地下组合油气勘探[J].成都理工大学学报:自然科学版,2013,40(5):511-520.
LIU Shugen,SUN Wei,LUO Zhili,et al.Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin,China[J].Journal of Chengdu University of Technology:Science & Technology Edition,2013,40(5):511-520.
[48] 汪泽成,姜华,王铜山,等.四川盆地桐湾期古地貌特征及成藏意义[J].石油勘探与开发,2014,41(3):305-312.
WANG Zecheng,JIANG Hua,WANG Tongshan,et al.Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J].Petroleum Exploration and Development,2014,41(3):305-312.
[49] 邢凤存,侯明才,林良彪,等,等.四川盆地晚震旦世-早寒武世构造运动记录及动力学成因讨论[J].地学前缘,2015,22(1):115-125.
XING Fengcun,HOU Mingcai,LIN Liangbiao,et al.The records and its dynamic genesis discussion of tectonic movement during the Late Sinian and Early Cambrian of Sichuan Basin[J].Earth Science Frontiers,2015,22(1):115-125.
[50] HAN Tao,FAN Haifeng,WEN Hanjie.Dwindling vanadium in seawater during the early Cambrian,South China[J].Chemical Geology,2018,492:20-29.
[51] ZHAI Lina,WU Chaodong,YE Yuntao,et al.Fluctuations in chemical weathering on the Yangtze block during the Ediacaran-Cambrian transition:implications for paleoclimatic conditions and the marine carbon cycle[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,490:280-292.
[52] WANG Dan,STRUCK U,LING Hongfei,et al.Marine redox variations and nitrogen cycle of the Early Cambrian southern margin of the Yangtze Platform,South China:evidence from nitrogen and organic carbon isotopes[J].Precambrian Research,2015,267:209-226.
[53] GUO Qingjun,STRAUSS H,ZHU Maoyan,et al.High resolution organic carbon isotope stratigraphy from a slope to basin alsetting on the Yangtze Platform,South China:implications for the Ediacaran-Cambrian transition[J].Precambrian Research,2013,225:209-217.
[54] GUO Qingjun,DENG Yinan,HIPPLER D,et al.REE and trace element patterns from organic-rich rocks of the Ediacaran-Cambrian transitional interval[J].Gondwana Research,2016,36:94-106.
[55] ISHIKAWA T,UENO Y,KOMIYA T,et al.Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area,South China:prominent global-scale isotope excursions just before the Cambrian Explosion[J].Gondwana Research,2008,14(1/2):193-208.
[56] ISHIKAWA T,UENO Y,SHU Degan,et al.The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area,South China[J].Gondwana Research,2014,25(3):1045-1056.
[57] 张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48.
ZHANG Shuichang,ZHANG Baomin,BIAN Lizeng,et al.Development constraints of marine source rocks in China[J].Earth Science Frontiers,2005,12(3):39-48.
[58] DEAN W E,CLAYPOOL G E,THIEDE J.Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean[J].Organic Geochemistry,1984,7(1):39-51.
[59] HARTNETT H E,KEIL R G,HEDGES J I,et al.Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J].Nature,1998,391(6667):572-574.
[60] STEINER M,LI Guoxiang,QIAN Yi,et al.Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):67-99.
[61] BABCOCK L E,PENG Shanchi,BRETT C E,et al.Global climate,sea level cycles,and biotic events in the Cambrian Period[J].Palaeoworld,2015,24(1/2):5-15.
[62] ALGEO T J,TRIBOVILLARD N.Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J].Chemical Geology,2009,268(3/4):211-225.
[63] SCOTT C,LYONS T W.Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks:refining the paleoproxies[J].Chemical Geology,2012,324-325:19-27.
[64] CHENG M,LI C,ZHOU L,et al.Transient deep-water oxygenation in the Early Cambrian Nanhua Basin,South China[J].Geochimica et Cosmochimica Acta,2017,210:42-58.
[65] FENG Lianjun,LI Chao,HUANG Jing,et al.A sulfate control on marine mid-depth euxinia on the early Cambrian (ca.529-521Ma)Yangtze Platform,South China[J].Precambrian Research,2014,246:123-133.
[66] ZHU Guangyou,ZHANG Ying,ZHOU Xiaoxiao,et al.TSR,deep oil cracking and exploration potential in the Hetianhe gas field,Tarim Basin,China[J].Fuel,2019,236:1078-1092.
[67] ZHU Guangyou,CHEN Feiran,WANG Meng,et al.Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin,China[J].AAPG Bulletin,2018,102(10):2123-2151.
[68] WEN Hanjie,FAN Haifeng,ZHANG Yuxu,et al.Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J].Geochimica et Cosmochimica Acta,2015,164:1-16.
[69] YIN Runsheng,XU Lingang,LEHMANN B,et al.Anomalous mercury enrichment in Early Cambrian black shales of South China:mercury isotopes indicate a seawater source[J].Chemical Geology,2017,467:159-167.
[70] LI Chao,JIN Chengsheng,PLANAVSKY N J,et al.Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian[J].Geology,2017,45(8):743-746.
[71] LIU Kai,FENG Qinglai,SHEN Jun,et al.Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,491:1-9.
[72] ZHANG Junpeng,FAN Tailiang,ALGEO T J,et al.Paleo-marine environments of the Early Cambrian Yangtze Platform[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,443:66-79.
[73] STEINER M,WALLIS E,ERDTMANN B D,et al.Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-Insights into a Lower Cambrian facies and bio-evolution[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2001,169(3/4):165-191.
[74] XU Lingang,LEHMANN B,MAO Jingwen,et al.Mo isotope and trace element patterns of Lower Cambrian black shales in South China:multi-proxy constraints on the paleoenvironment[J].Chemical Geology,2012,318-319:45-59.
[75] 谢小敏,腾格尔,秦建中,等.贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究[J].地质学报,2015,89(2):425-439.
XIE Xiaomin,TENG Ger,QIN Jianzhong,et al.Depositional environment,organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation,Kaili,Guizhou[J].Acta Geologica Sinica,2015,89(2):425-439.
[76] FU Yong,DONG Lin,LI Chao,et al.New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang Formation[J].Journal of Earth Science,2016,27(2):271-281.
[77] YANG Xiaoqun,FAN Tailiang,WU Yue.Lithofacies and cyclicity of the Lower Cambrian Niutitang shale in the Mayang Basin of western Hunan,South China[J].Journal of Nature Gas Science and Engineering,2016,28:74-86.
[78] LIN Tuo,BAO Shujing,ZHANG Jinchuan,et al.Shale gas accumulation conditions and gas-bearing characteristics of the Lower Cambrian Niutitang Formation in Well Changye-1 in northwestern Hunan Province[J].Petroleum Research,2016,1(2):205-212.
[79] CHANG Huajin,CHU Xuelei,FENG Lianjun,et al.Marine redox stratification on the earliest Cambrian (ca.542-529?Ma)Yangtze Platform[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2018,504:75-85.
[80] 付小东.四川盆地下古生界-震旦系烃源岩生烃潜力精细研究[R].杭州:中国石油杭州地质研究院四川盆地研究中心,2019.
FU Xiaodong.Hydrocarbon generation potential of Lower Paleozoic -Sinian source rocks in Sichuan Basin[R].Hangzhou:Sichuan Basin Research Center of PetroChina Hangzhou Research Institute of Geology,2019. |